Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Nature ; 549(7671): 247-251, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28905895

RESUMO

The ability to control chemical and physical structuring at the nanometre scale is important for developing high-performance thermoelectric materials. Progress in this area has been achieved mainly by enhancing phonon scattering and consequently decreasing the thermal conductivity of the lattice through the design of either interface structures at nanometre or mesoscopic length scales or multiscale hierarchical architectures. A nanostructuring approach that enables electron transport as well as phonon transport to be manipulated could potentially lead to further enhancements in thermoelectric performance. Here we show that by embedding nanoparticles of a soft magnetic material in a thermoelectric matrix we achieve dual control of phonon- and electron-transport properties. The properties of the nanoparticles-in particular, their superparamagnetic behaviour (in which the nanoparticles can be magnetized similarly to a paramagnet under an external magnetic field)-lead to three kinds of thermoelectromagnetic effect: charge transfer from the magnetic inclusions to the matrix; multiple scattering of electrons by superparamagnetic fluctuations; and enhanced phonon scattering as a result of both the magnetic fluctuations and the nanostructures themselves. We show that together these effects can effectively manipulate electron and phonon transport at nanometre and mesoscopic length scales and thereby improve the thermoelectric performance of the resulting nanocomposites.

3.
Rep Prog Phys ; 84(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34192673

RESUMO

Thermoelectric (TE) materials have great potential for waste-energyrecycling and solid-state cooling. Their conversion efficiency has attracted huge attention to the development of TE devices, and largely depends on the thermal and electrical transport properties. Magnetically enhanced thermoelectrics open up the possibility of making thermoelectricity a future leader in sustainable energy development and offer an intriguing platform for both fundamental physics and prospective applications. In this review, state-of-the-art TE materials are summarized from the magnetism point of view, via diagrams of the charges, lattices, orbits and spin degrees of freedom. Our fundamental knowledge of magnetically induced TE effects is discussed. The underlying thermo-electro-magnetic merits are discussed in terms of superparamagnetism- and magnetic-transition-enhanced electron scattering, field-dependent magnetoelectric coupling, and the magnon- and phonon-drag Seebeck effects. After these topics, we finally review several thermal-electronic and spin current-induced TE materials, highlight future possible strategies for further improvingZT, and also give a brief outline of ongoing research challenges and open questions in this nascent field.

4.
Materials (Basel) ; 16(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959514

RESUMO

In this study, we aim to minimize light loss and achieve high power conversion efficiencies (PCE) in perovskite solar cells (PSCs) by employing a spectral conversion film component with antireflection properties. In our scheme, NaYF4:Tm, Yb, and Gd luminescent nanorod/silica nanosphere-based thin films are applied on CH3NH3PbI3 PSCs to improve the device efficiency. The film was fabricated by spin coating an aged silica sol containing NaYF4:Tm, Yb, and Gd luminescent nanorods. The size and the spectral conversion properties of the NaYF4:Tm, Yb, and Gd luminescent nanorods were controlled by tuning the Gd3+ ion concentration. The microstructure and the transmittance properties of the thin film were controlled by changing the concentration of NaYF4:Tm, Yb, and Gd luminescent nanorod in silica sol. The thin films have excellent spectral conversion properties while exhibiting a maximum transmittance. The photovoltaic performance of PSCs with NaYF4:Tm, Yb, and Gd luminescent nanorod/silica nanosphere-based thin films was systematically investigated. The light transmittance was optimized to 95.1% on a cleaned glass substrate, which resulted in an average increase of about 3.0% across the broadband range of 400-800 nm. The optimized films widen the spectrum of light absorbed by conventional PSC cells and reduce reflections across a broad range, enhancing the photovoltaic performance of PSCs. As a result, the PCE of the PSC increased from 14.51% for the reference device without a thin film to 15.67% for the PSC device with an optimized thin film. This study presents a comprehensive solution to the problem of Fresnel reflection and spectral response mismatch of the PSCs, which provides new ideas for the light management of PSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA