Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(10): 4636-4645, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38394612

RESUMO

Two-dimensional (2D) metal-organic framework (MOF) nanosheets with large surface area, ultrathin thickness, and highly accessible active sites have attracted great research attention. Developing efficient approaches to realize the controllable synthesis of well-defined 2D MOFs with a specific composition and morphology is critical. However, it is still a significant challenge to construct thin and uniform 2D MOF nanosheets and resolve the reagglomeration as well as poor stability of target 2D MOF products. Here, an "in situ exfoliation growth" strategy is proposed, where a one-step synthetic process can realize the successful fabrication of PBA/MIL-53(NiFe)/NF nanosheets on the surface of nickel foam (NF) via in situ conversion and exfoliation growth strategies. The PBA/MIL-53(NiFe)/NF nanosheets combine the individual advantages of MOFs, Prussian blue analogues (PBAs), and 2D materials. As expected, the resulting PBA/MIL-53(NiFe)/NF as a glucose electrode exhibits an extremely high sensitivity of 25.74 mA mM-1 cm-2 in a very wide concentration range of 180 nM to 4.8 µM. The present exciting work provides a simple and effective strategy for the construction of high-performance nonenzymatic glucose electrochemical biosensors.

2.
Inorg Chem ; 61(28): 10934-10941, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35772081

RESUMO

Metal-organic frameworks (MOFs) as classic crystalline porous materials have attracted great interest in the catalytic field. However, how to realize molecular regulation of the MOF structure to achieve a remarkable oxygen evolution reaction (OER) electrocatalyst is still a challenge. Herein, we designed several series of special MOF materials to explore the relationship between the structure and properties as well as the related reactive mechanism. First, various metal centers, including Fe, Co, Ni, Zn, and Mg, were utilized to construct the first series of trimetallic MOF materials, namely, M3-MOF-BDC, where BDC = 1,4-benzenedicarboxylic acid, also known as terephthalic acid. Among of them, Fe3-MOF-BDC shows the best OER performance and only needs an overpotential of 312 mV at 10 mA cm-2. Then, functional BDC-X ligands (X = NH2, OH, NO2, DH) with various characteristic groups were selected to construct a new series, namely, Fe3-MOF-BDC-X, to further improve its OER electrocatalytic performance. As expected, Fe3-MOF-BDC-NH2 exhibited a greatly enhanced OER performance with ultralow Tafel slopes of 45 mV dec-1 and overpotentials of 280 mV at 10 mA cm-2 when the BDC-NH2 ligand was adopted, even superior to commercial IrO2 (323 mV) and most of the reported pristine MOFs as OER electrodes. Much higher structural stability was proven. The detailed structure-property relationship and mechanism are discussed. In a word, this work provides a very important theoretical basis for the design and exploration of new MOF electrocatalysts.

3.
Physiol Plant ; 172(2): 1073-1088, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33755204

RESUMO

Drought stress hinders the growth and development of crop plants and ultimately its productivity. It is expected that drought stress will be frequent and intense in the future due to drastic changes in the global climate. It is necessary to make crop plants more resilient to drought stress through various techniques; drought-hardening is one of them. Defining various metabolic strategies used by tobacco plants to confer drought tolerance will be important for maintaining plant physiological functions, but studies addressing this topic are limited. This study was designed to elucidate the drought tolerance and adaptation strategies used by tobacco plants via the application of different circular drought-hardening cycles (control: no drought-hardening, T1: one cycle of drought hardening, T2: two cycles of drought-hardening, and T3: three cycles of drought-hardening) to two tobacco varieties namely Honghuadajinyuan (H) and Yun Yan-100 (Y). The results revealed that drought-hardening decreased the fresh and dry biomass of the tobacco plants. The decrease was more pronounced in the T3 treatment for both H (23 and 29%, respectively) and Y (26 and 31%, respectively) under drought stress. The MDA contents, especially in T1 and T2 in both varieties, were statistically similar compared with control under drought stress. Similarly, higher POD, APX, and GR activities were observed, especially in T3, and elevated amounts of AsA and GSH were also observed among the different circular drought-hardening treatments under drought stress. Thus circular drought-hardening mitigated the oxidative damage by increasing the antioxidant enzyme activities and elevated the content of antioxidant substances, a key metabolic strategy under drought stress. Similarly, another important plant metabolic strategy is the osmotic adjustment. Different circular drought-hardening treatments improved the accumulation of proline and soluble sugars contents which contributed to osmoregulation. Finally, at the molecular level, circular drought-hardening improved the transcript levels of antioxidant enzyme-related genes (CAT, APX1, and GR2), proline and polyamines biosynthesis-related genes (P5CS1 and ADC2), and ABA signaling (SnRK2), and transcription factors (AREB1 and WRKY6) in response to drought stress. As a result, circular drought-hardening (T2 and T3 treatments) promoted tolerance to water stress via affecting the anti-oxidative capacity, osmotic adjustment, and regulation of gene expression in tobacco.


Assuntos
Secas , Nicotiana , Antioxidantes , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Osmorregulação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Nicotiana/genética , Nicotiana/metabolismo
4.
Physiol Mol Biol Plants ; 27(4): 847-860, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33967467

RESUMO

Brassinosteroids (BR) play diverse roles in the regulation of plant growth and development. BR promotes plant growth by triggering cell division and expansion. However, the effect of exogenous BR application on the leaf size and expansion of tobacco is unknown. Tobacco seedlings are treated with different concentrations of exogenous 2,4-epibrassinolide (EBL) [control (CK, 0 mol L-1), T1 (0.5 × 10-7 mol L-1), and T2 (0.5 × 10-4 mol L-1)]. The results show that T1 has 17.29% and T2 has 25.99% more leaf area than control. The epidermal cell area is increased by 24.40% and 17.13% while the number of epidermal cells is 7.06% and 21.06% higher in T1 and T2, respectively, relative to control. So the exogenous EBL application improves the leaf area by increasing cell numbers and cell area. The endogenous BR (7.5 times and 68.4 times), auxin (IAA) (4.03% and 25.29%), and gibberellin (GA3) contents (84.42% and 91.76%) are higher in T1 and T2, respectively, in comparison with control. Additionally, NtBRI1, NtBIN2, and NtBES1 are upregulated showing that the brassinosteroid signaling pathway is activated. Furthermore, the expression of the key biosynthesis-related genes of BR (NtDWF4), IAA (NtYUCCA6), and GA3 (NtGA3ox-2) are all upregulated under EBL application. Finally, the exogenous EBL application also upregulated the expression of cell growth-related genes (NtCYCD3;1, NtARGOS, NtGRF5, NtGRF8, and NtXTH). The results reveal that the EBL application increases the leaf size and expansion by promoting the cell expansion and division through higher BR, IAA, and GA3 contents along with the upregulation of cell growth-related genes. The results of the study provide a scientific basis for the effect of EBL on tobacco leaf growth at morphological, anatomical, biochemical, and molecular levels. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00971-x.

5.
BMC Plant Biol ; 20(1): 486, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097005

RESUMO

BACKGROUND: Drought stress is the most harmful one among other abiotic stresses with negative impacts on crop growth and development. Drought-hardening is a feasible and widely used method in tobacco seedlings cultivation. It has gained extensive interests due to its role in improving drought tolerance. This research aimed to investigate the role of drought-hardening and to unravel the multiple mechanisms underlying tobacco drought tolerance and adaptation. RESULTS: This study was designed in which various drought-hardening treatments (CK (no drought-hardening), T1 (drought-hardening for 24 h), T2 (drought-hardening for 48 h), and T3 (drought-hardening for 72 h)) were applied to two tobacco varieties namely HongHuaDaJinYuan (H) and Yun Yan-100 (Y). The findings presented a complete framework of drought-hardening effect at physiological, biochemical, and gene expression levels of the two tobacco varieties under drought stress. The results showed that T2 and T3 significantly reduced the growth of the two varieties under drought stress. Similarly, among the various drought-hardening treatments, T3 improved both the enzymatic (POD, CAT, APX) and non-enzymatic (AsA) defense systems along with the elevated levels of proline and soluble sugar to mitigate the negative effects of oxidative damage and bringing osmoregulation in tobacco plants. Finally, the various drought-hardening treatments (T1, T2, and T3) showed differential regulation of genes expressed in the two varieties, while, particularly T3 drought-hardening treatment-induced drought tolerance via the expression of various stress-responsive genes by triggering the biosynthesis pathways of proline (P5CS1), polyamines (ADC2), ABA-dependent (SnRK2, AREB1), and independent pathways (DREB2B), and antioxidant defense-related genes (CAT, APX1, GR2) in response to drought stress. CONCLUSIONS: Drought-hardening made significant contributions to drought tolerance and adaptation in two tobacco variety seedlings by reducing its growth and, on the other hand, by activating various defense mechanisms at biochemical and molecular levels. The findings of the study pointed out that drought-hardening is a fruitful strategy for conferring drought tolerance and adaptations in tobacco. It will be served as a useful method in the future to understand the drought tolerance and adaptation mechanisms of other plant species. Drought-hardening improved drought tolerance and adaptation of the two tobacco varieties. T1 indicates drought-hardening for 24 h, T2 indicates drought-hardening for 48 h, T3 indicates drought-hardening for 72 h.


Assuntos
Nicotiana/fisiologia , Adaptação Fisiológica , Ácido Ascórbico/metabolismo , Clorofila/metabolismo , Produção Agrícola/métodos , Desidratação , Fluorescência , Regulação da Expressão Gênica de Plantas/fisiologia , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Oxirredução , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Prolina/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
6.
J Plant Res ; 133(1): 35-48, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31745686

RESUMO

Plants can change leaf forms, adjusting light conditions on their adaxial and abaxial surfaces, to adapt to light environments and enhance their light use efficiencies. The difference between photosynthesis on the two leaf sides (dorsoventral asymmetry) is an important factor that affects light use efficiency. However, photosynthetic dorsoventral asymmetry is rarely compared under direct and diffuse light conditions. To estimate the impacts of recently reported alterations in direct and diffuse light in the sky radiation on plant carbon assimilation, variations in morphology between the two leaf sides in tobacco (Nicotiana tabacum L.) were investigated, and the dorsoventral responses of photosynthesis to illuminating directions were compared in direct and diffuse light. Dorsoventral asymmetry was reflected in stomatal densities, anatomic structures, and photochemical traits, which caused markedly different photosynthetic rates as well as stomatal conductances both in direct and diffuse light. However, the degree of photosynthetic asymmetry was weakened in diffuse light. The diffuse light caused a greater stomatal conductance on the abaxial side than direct light, which resulted in reduced photosynthetic asymmetry. In addition, the photosynthetic dorsoventral asymmetry could be affected by the photosynthetic photon flux density. These results contribute to understanding the dorsoventral regulation of photosynthesis in bifacial leaves, and provide a reference for breeding to cope with the increase in the proportion of diffuse light in the future.


Assuntos
Nicotiana , Fotossíntese , Dióxido de Carbono , Luz , Folhas de Planta
7.
J Org Chem ; 82(1): 211-233, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28026176

RESUMO

A series of 28 analogues of the phytotoxic geranylcyclohexentriol (-)-phomentrioloxin A (1) has been synthesized through cross-couplings of various enantiomerically pure haloconduritols or certain deoxygenated derivatives with either terminal alkynes or borylated alkenes. Some of these analogues display modest herbicidal activities, and physiological profiling studies suggest that analogue 4 inhibits photosystem II in isolated thylakoids in vitro.


Assuntos
Araceae/efeitos dos fármacos , Diterpenos/farmacologia , Herbicidas/farmacologia , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Diterpenos/síntese química , Diterpenos/química , Herbicidas/síntese química , Herbicidas/química , Complexo de Proteína do Fotossistema II/metabolismo
9.
Angew Chem Int Ed Engl ; 56(41): 12663-12667, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28833888

RESUMO

We report the use of isolable primary and secondary alkylcarbastannatrane nucleophiles in site-specific fluorination reactions. These reactions occur without the need for transition metal catalysis or in situ activation of the nucleophile. In the absence of the carbastannatrane backbone, alkyltin nucleophiles exhibit no activity towards fluorination. When enantioenriched alkylcarbastannatranes are employed, fluorination occurs predominately via a stereoinvertive mechanism to generate highly enantioenriched alkyl fluoride compounds. These conditions can also be extended to stereospecific chlorination, bromination, and iodination reactions.


Assuntos
Compostos Organometálicos/química , Alquilação , Fluoretos/síntese química , Fluoretos/química , Halogenação , Indicadores e Reagentes/síntese química , Indicadores e Reagentes/química , Compostos Organometálicos/síntese química , Estereoisomerismo
10.
Cell Physiol Biochem ; 36(4): 1305-15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26160442

RESUMO

BACKGROUND/AIMS: After myocardial infarction (MI), cardiac fibrosis greatly contributes to left ventricular remodeling and heart failure. The intermediate-conductance calcium-activated potassium Channel (KCa3.1) has been recently proposed as an attractive target of fibrosis. The present study aimed to detect the effects of KCa3.1 blockade on ventricular remodeling following MI and its potential mechanisms. METHODS: Myocardial expression of KCa3.1 was initially measured in a mouse MI model by Western blot and real time-polymerase chain reaction. Then after treatment with TRAM-34, a highly selective KCa3.1 blocker, heart function and fibrosis were evaluated by echocardiography, histology and immunohistochemistry. Furthermore, the role of KCa3.1 in neonatal mouse cardiac fibroblasts (CFs) stimulated by angiotensin II (Ang II) was tested. RESULTS: Myocardium expressed high level of KCa3.1 after MI. Pharmacological blockade of KCa3.1 channel improved heart function and reduced ventricular dilation and fibrosis. Besides, a lower prevalence of myofibroblasts was found in TRAM-34 treatment group. In vitro studies KCa3.1 was up regulated in CFs induced by Ang II and suppressed by its blocker.KCa3.1 pharmacological blockade attenuated CFs proliferation, differentiation and profibrogenic genes expression and may regulating through AKT and ERK1/2 pathways. CONCLUSION: Blockade of KCa3.1 is able to attenuate ventricular remodeling after MI through inhibiting the pro-fibrotic effects of CFs.


Assuntos
Ventrículos do Coração/efeitos dos fármacos , Coração/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Pirazóis/uso terapêutico , Remodelação Ventricular/efeitos dos fármacos , Animais , Células Cultivadas , Colágeno/análise , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibrose , Ventrículos do Coração/patologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miocárdio/metabolismo
11.
Immunobiology ; 229(5): 152831, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944891

RESUMO

The pro-tumorigenic or anti-tumorigenic role of tumor infiltrating mast cells (TIMs) in tumors depends not only on the type of cancer and the degree of tumor progression, but also on their location in the tumor bulk. In our investigation, we employed immunohistochemistry to reveal that the mast cells (MCs) in the tumor stroma are positively correlated with metastasis of ovarian cancer (OC), but not in the tumor parenchyma. To delve deeper into the influence of different culture matrix stiffness on MCs' biological functions within the tumor parenchymal and stromal regions, we conducted a transcriptome analysis of the mouse MC line (P815) cultured in two-dimensional (2D) or three-dimensional (3D) culture system. Further research has found that the softer 3D extracellular matrix stiffness could improve the mitochondrial activity of MCs to promote proliferation by increasing the expression levels of mitochondrial activity-related genes, namely Pet100, atp5md, and Cox7a2. Furthermore, employing LASSO regression analysis, we identified that Pet100 and Cox7a2 were closely associated with the prognosis of OC patients. These two genes were subsequently employed to construct a risk score model, which revealed that the high-risk group model as one of the prognostic factors for OC patients. Additionally, the XCell algorithm analysis showed that the high-risk group displayed a broader spectrum of immune cell infiltrations. Our research revealed that TIMs in the tumor stroma could promote the metastasis of OC, and mitochondrial activity-related proteins Pet100/Cox7a2 can serve as biomarkers for prognostic evaluation of OC.

12.
Mater Today Bio ; 25: 101012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38464495

RESUMO

Urethral stricture (US) is a common disease in urology, lacking effective treatment options. Although injecting a stem cells suspension into the affected area has shown therapeutic benefits, challenges such as low retention rate and limited efficacy hinder the clinical application of stem cells. This study evaluates the therapeutic impact and the mechanism of adipose-derived vascular fraction (SVF) combined with cell sheet engineering technique on urethral fibrosis in a rat model of US. The results showed that SVF-cell sheets exhibit positive expression of α-SMA, CD31, CD34, Stro-1, and eNOS. In vivo study showed less collagen deposition, low urethral fibrosis, and minimal tissue alteration in the group receiving cell sheet transplantation. Furthermore, the formation of a three-dimensional (3D) tissue-like structure by the cell sheets enhances the paracrine effect of SVF, facilitates the infiltration of M2 macrophages, and suppresses the TGF-ß/Smad2 pathway through HGF secretion, thereby exerting antifibrotic effects. Small animal in vivo imaging demonstrates improved retention of SVF cells at the damaged urethra site with cell sheet application. Our results suggest that SVF combined with cell sheet technology more efficiently inhibits the early stages of urethral fibrosis.

13.
J Am Heart Assoc ; 13(6): e032107, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38471827

RESUMO

BACKGROUND: This study aimed to establish and validate a nomogram model for predicting 90-day mortality in patients with acute basilar artery occlusion receiving endovascular thrombectomy. METHODS AND RESULTS: A total of 242 patients with basilar artery occlusion undergoing endovascular thrombectomy were enrolled in our study, in which 172 patients from 3 stroke centers were assigned to the training cohort, and 70 patients from another center were assigned to the validation cohort. Univariate and multivariate logistic regression analyses were adopted to screen prognostic predictors, and those with significance were subjected to establish a nomogram model in the training cohort. The discriminative accuracy, calibration, and clinical usefulness of the nomogram model was verified in the internal and external cohorts. Six variables, including age, baseline National Institutes of Health Stroke Scale score, Posterior Circulation-Alberta Stroke Program Early CT (Computed Tomography) score, Basilar Artery on Computed Tomography Angiography score, recanalization failure, and symptomatic intracranial hemorrhage, were identified as independent predictors of 90-day mortality of patients with basilar artery occlusion and were subjected to develop a nomogram model. The nomogram model exhibited good discrimination, calibration, and clinical usefulness in both the internal and the external cohorts. Additionally, patients were divided into low-, moderate-, and high-risk groups based on the risk-stratified nomogram model. CONCLUSIONS: Our study proposed a novel nomogram model that could effectively predict 90-day mortality of patients with basilar artery occlusion after endovascular thrombectomy and stratify patients with high, moderate, or low risk, which has a potential to facilitate prognostic judgment and clinical management of stroke.


Assuntos
Arteriopatias Oclusivas , Procedimentos Endovasculares , Acidente Vascular Cerebral , Insuficiência Vertebrobasilar , Humanos , Artéria Basilar , Nomogramas , Resultado do Tratamento , Estudos Retrospectivos , Trombectomia/métodos , Acidente Vascular Cerebral/etiologia , Arteriopatias Oclusivas/diagnóstico por imagem , Arteriopatias Oclusivas/cirurgia , Medição de Risco , Procedimentos Endovasculares/métodos
14.
Med Image Anal ; 94: 103112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38401270

RESUMO

Domain continual medical image segmentation plays a crucial role in clinical settings. This approach enables segmentation models to continually learn from a sequential data stream across multiple domains. However, it faces the challenge of catastrophic forgetting. Existing methods based on knowledge distillation show potential to address this challenge via a three-stage process: distillation, transfer, and fusion. Yet, each stage presents its unique issues that, collectively, amplify the problem of catastrophic forgetting. To address these issues at each stage, we propose a tri-enhanced distillation framework. (1) Stochastic Knowledge Augmentation reduces redundancy in knowledge, thereby increasing both the diversity and volume of knowledge derived from the old network. (2) Adaptive Knowledge Transfer selectively captures critical information from the old knowledge, facilitating a more accurate knowledge transfer. (3) Global Uncertainty-Guided Fusion introduces a global uncertainty view of the dataset to fuse the old and new knowledge with reduced bias, promoting a more stable knowledge fusion. Our experimental results not only validate the feasibility of our approach, but also demonstrate its superior performance compared to state-of-the-art methods. We suggest that our innovative tri-enhanced distillation framework may establish a robust benchmark for domain continual medical image segmentation.


Assuntos
Benchmarking , Processamento de Imagem Assistida por Computador , Humanos , Incerteza
15.
J Nat Prod ; 76(8): 1514-8, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23895674

RESUMO

The enantiomeric form, 1R, of the structure (1S) assigned to the phytotoxic natural product phomentrioloxin has been synthesized in seven steps from the homochiral cis-1,2-dihydrocatechol 3. These studies reveal that the true structure of phomentrioloxin is represented by 1R and not by 1S.


Assuntos
Fatores Biológicos/síntese química , Cicloexanóis/síntese química , Diterpenos/síntese química , Alcaloides/química , Fatores Biológicos/química , Fatores Biológicos/farmacologia , Cicloexanóis/química , Cicloexanóis/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Estrutura Molecular , Estereoisomerismo
16.
Chem Sci ; 14(48): 14124-14130, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38098708

RESUMO

We have developed a general process for the formation of enantioenriched benzylic stereocenters via stereospecific Pd-catalyzed cross-coupling reactions of enantioenriched benzylic tricyclohexyltin nucleophiles. This process proceeds with excellent stereospecificity for a remarkably broad scope of electrophilic coupling partners including aryl and heteroaryl halides and triflates, acid chlorides, thioesters, chloroformates, and carbamoyl chlorides. Thus, enantioenriched 1,1-diarylalkanes as well as formal products of asymmetric enolate arylation are readily accessed using this approach. We additionally provide the first demonstration of a Sn-selective cross-coupling reaction using a vicinal alkylborylstannane nucleophile. In these reactions, the presence of cyclohexyl spectator ligands on tin is essential to ensure selective transfer of the secondary benzylic unit from tin to palladium.

17.
IEEE J Biomed Health Inform ; 27(9): 4293-4304, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37347634

RESUMO

Guidewire Artifact Removal (GAR) involves restoring missing imaging signals in areas of IntraVascular Optical Coherence Tomography (IVOCT) videos affected by guidewire artifacts. GAR helps overcome imaging defects and minimizes the impact of missing signals on the diagnosis of CardioVascular Diseases (CVDs). To restore the actual vascular and lesion information within the artifact area, we propose a reliable Trajectory-aware Adaptive imaging Clue analysis Network (TAC-Net) that includes two innovative designs: (i) Adaptive clue aggregation, which considers both texture-focused original (ORI) videos and structure-focused relative total variation (RTV) videos, and suppresses texture-structure imbalance with an active weight-adaptation mechanism; (ii) Trajectory-aware Transformer, which uses a novel attention calculation to perceive the attention distribution of artifact trajectories and avoid the interference of irregular and non-uniform artifacts. We provide a detailed formulation for the procedure and evaluation of the GAR task and conduct comprehensive quantitative and qualitative experiments. The experimental results demonstrate that TAC-Net reliably restores the texture and structure of guidewire artifact areas as expected by experienced physicians (e.g., SSIM: 97.23%). We also discuss the value and potential of the GAR task for clinical applications and computer-aided diagnosis of CVDs.


Assuntos
Artefatos , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Processamento de Imagem Assistida por Computador/métodos , Diagnóstico por Computador
18.
J Plant Physiol ; 281: 153920, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36680840

RESUMO

Drought is one of the foremost environmental factors that limit the growth of plants. Leaf thickness (LT) is an important quantitative trait in plant physiology. The experiment was carried out in a growth room and the plants were divided into two groups such as well-watered and drought-stressed. This work investigated leaf growth in terms of leaf surface growth and expansion rate, leaf stomata traits, LT, anticlinal growth, and leaf cell layers. The results showed that the leaf area and leaf surface expansion rate were decreased by drought stress (DS). Similarly, LT, anticlinal expansion rate, palisade and spongy tissue thickness, and their related expansion rates were also decreased at different days' time points (DTP) of DS. However, a steady increase was observed in the aforementioned parameters after 12 DTP of DS. The stomatal density increased while stomata size decreased at 3 DTP and 12 DTP (low leaf water potential and relative leaf water content at these time points) and vice versa at 24 DTP compared with the well-watered plants indicating adaptations in these traits in response to DS, and thus the leaf water status played a role in the regulation of leaf stomata traits. The cell length decreased in the upper epidermis, palisade and spongy tissues by DS up to 12 DTP led to lower LT while an increase was observed after 12 DTP that resulted in higher LT. The increase in the LT was supported by the upregulation of starch and sucrose metabolism, glycerolipid metabolism, protein processing in endoplasmic reticulum pathways at 18 DTP along with the differentially expressed genes induced that were related to cell wall remodeling (cellulose, expansin, xyloglucans) and cell expansion (auxin response factors and aquaporin). The results explain the response of leaf thickness to drought stress and show alterations in LT and leaf stomatal traits. This study might serve as a valuable source of gene information for functional studies and provide a theoretical basis to understand leaf growth in terms of leaf anatomy and leaf stomatal traits under drought stress.


Assuntos
Secas , Nicotiana , Nicotiana/genética , Transcriptoma , Folhas de Planta/metabolismo , Água/metabolismo , Estômatos de Plantas/fisiologia
19.
J Org Chem ; 77(15): 6629-33, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22774861

RESUMO

A mild Pd-catalyzed process for the borylation of alkyl bromides has been developed using bis(pinacolato)diboron as a boron source. This process accommodates the use of a wide range of functional groups on the alkyl bromide substrate. Primary bromides react with complete selectivity in the presence of a secondary bromide. The generality of this approach is demonstrated by its extension to the use of alkyl iodides and alkyl tosylates, as well as borylation reactions employing bis(neopentyl glycolato)diboron as the boron source.


Assuntos
Compostos de Boro/síntese química , Hidrocarbonetos Clorados/química , Paládio/química , Compostos de Boro/química , Catálise , Estrutura Molecular
20.
Biology (Basel) ; 11(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36009819

RESUMO

Drought stress is a major abiotic stress that hinders plant growth and development. Brassinosteroids (BR), including 2,4-epibrassinolide (EBR), play important roles in plant growth, development, and responses to abiotic stresses, including drought stress. This work investigates exogenous EBR application roles in improving drought tolerance in tobacco. Tobacco plants were divided into three groups: WW (well-watered), DS (drought stress), and DSB (drought stress + 0.05 mM EBR). The results revealed that DS decreased the leaf thickness (LT), whereas EBR application upregulated genes related to cell expansion, which were induced by the BR (DWF4, HERK2, and BZR1) and IAA (ARF9, ARF6, PIN1, SAUR19, and ABP1) signaling pathway. This promoted LT by 28%, increasing plant adaptation. Furthermore, EBR application improved SOD (22%), POD (11%), and CAT (5%) enzyme activities and their related genes expression (FeSOD, POD, and CAT) along with a higher accumulation of osmoregulatory substances such as proline (29%) and soluble sugars (14%) under DS and conferred drought tolerance. Finally, EBR application augmented the auxin (IAA) (21%) and brassinolide (131%) contents and upregulated genes related to drought tolerance induced by the BR (BRL3 and BZR2) and IAA (YUCCA6, SAUR32, and IAA26) signaling pathways. These results suggest that it could play an important role in improving mechanisms of drought tolerance in tobacco.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA