RESUMO
Benign epilepsy with centrotemporal spikes (BECTS) is a common pediatric epilepsy syndrome that has been widely reported to show abnormal brain structure and function. However, the genetic mechanisms underlying structural and functional changes remain largely unknown. Based on the structural and resting-state functional magnetic resonance imaging data of 22 drug-naïve children with BECTS and 33 healthy controls, we conducted voxel-based morphology (VBM) and fractional amplitude of low-frequency fluctuation (fALFF) analyses to compare cortical morphology and spontaneous brain activity between the 2 groups. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial correlation analyses were applied to explore gene expression profiles associated with gray matter volume (GMV) and fALFF changes in BECTS. VBM analysis demonstrated significantly increased GMV in the right brainstem and right middle cingulate gyrus in BECTS. Moreover, children with BECTS exhibited significantly increased fALFF in left temporal pole, while decreased fALFF in right thalamus and left precuneus. These brain structural and functional alterations were closely related to behavioral and cognitive deficits, and the fALFF-linked gene expression profiles were enriched in voltage-gated ion channel and synaptic activity as well as neuron projection. Our findings suggest that brain morphological and functional abnormalities in children with BECTS involve complex polygenic genetic mechanisms.
Assuntos
Transtornos Cognitivos , Epilepsia Rolândica , Humanos , Criança , Transcriptoma , Epilepsia Rolândica/diagnóstico por imagem , Epilepsia Rolândica/genética , Epilepsia Rolândica/complicações , Encéfalo/diagnóstico por imagem , Lobo Parietal , Imageamento por Ressonância MagnéticaRESUMO
Mental rotation, one of the cores of spatial cognitive abilities, is closely associated with spatial processing and general intelligence. Although the brain underpinnings of mental rotation have been reported, the cellular and molecular mechanisms remain unexplored. Here, we used magnetic resonance imaging, a whole-brain spatial distribution atlas of 19 neurotransmitter receptors, transcriptomic data from Allen Human Brain Atlas, and mental rotation performances of 356 healthy individuals to identify the genetic/molecular foundation of mental rotation. We found significant associations of mental rotation performance with gray matter volume and fractional amplitude of low-frequency fluctuations in primary visual cortex, fusiform gyrus, primary sensory-motor cortex, and default mode network. Gray matter volume and fractional amplitude of low-frequency fluctuations in these brain areas also exhibited significant sex differences. Importantly, spatial correlation analyses were conducted between the spatial patterns of gray matter volume or fractional amplitude of low-frequency fluctuations with mental rotation and the spatial distribution patterns of neurotransmitter receptors and transcriptomic data, and identified the related genes and neurotransmitter receptors associated with mental rotation. These identified genes are localized on the X chromosome and are mainly involved in trans-synaptic signaling, transmembrane transport, and hormone response. Our findings provide initial evidence for the neural and molecular mechanisms underlying spatial cognitive ability.
Assuntos
Encéfalo , Transcriptoma , Humanos , Masculino , Feminino , Encéfalo/patologia , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética , Cognição , Mapeamento Encefálico/métodos , Neurotransmissores , Receptores de NeurotransmissoresRESUMO
Functional abnormalities of default mode network (DMN) have been well documented in major depressive disorder (MDD). However, the association of DMN functional reorganization with antidepressant treatment and gene expression is unclear. Moreover, whether the functional interactions of DMN could predict treatment efficacy is also unknown. Here, we investigated the link of treatment response with functional alterations of DMN and gene expression with a comparably large sample including 46 individuals with MDD before and after electroconvulsive therapy (ECT) and 46 age- and sex-matched healthy controls. Static and dynamic functional connectivity (dFC) analyses showed increased intrinsic/static but decreased dynamic functional couplings of inter- and intra-subsystems and between nodes of DMN. The changes of static functional connections of DMN were spatially correlated with brain gene expression profiles. Moreover, static and dFC of the DMN before treatment as features could predict depressive symptom improvement following ECT. Taken together, these results shed light on the underlying neural and genetic basis of antidepressant effect of ECT and the intrinsic functional connectivity of DMN have the potential to serve as prognostic biomarkers to guide accurate personalized treatment.
Assuntos
Transtorno Depressivo Maior , Eletroconvulsoterapia , Humanos , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/tratamento farmacológico , Rede de Modo Padrão , Depressão , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Antidepressivos/uso terapêutico , Vias Neurais/diagnóstico por imagemRESUMO
Background: Patients with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis often experience severe symptoms. Resting-state functional MRI (rs-fMRI) has revealed widespread impairment of functional networks in patients. However, the changes in information flow remain unclear. This study aims to investigate the intrinsic functional connectivity (FC) both within and between resting-state networks (RSNs), as well as the alterations in effective connectivity (EC) between these networks. Methods: Resting-state functional MRI (rs-fMRI) data were collected from 25 patients with anti-NMDAR encephalitis and 30 healthy controls (HCs) matched for age, sex, and educational level. Changes in the intrinsic functional connectivity (FC) within and between RSNs were analyzed using independent component analysis (ICA). The functional interaction between RSNs was identified by granger causality analysis (GCA). Results: Compared to HCs, patients with anti-NMDAR encephalitis exhibited lower performance on the Wisconsin Card Sorting Test (WCST), both in terms of correct numbers and correct categories. Additionally, these patients demonstrated decreased scores on the Montreal Cognitive Assessment (MoCA). Neuroimaging studies revealed abnormal intra-FC within the default mode network (DMN), increased intra-FC within the visual network (VN) and dorsal attention network (DAN), as well as increased inter-FC between VN and the frontoparietal network (FPN). Furthermore, aberrant effective connectivity (EC) was observed among the DMN, DAN, FPN, VN, and somatomotor network (SMN). Conclusion: Patients with anti-NMDAR encephalitis displayed noticeable deficits in both memory and executive function. Notably, these patients exhibited widespread impairments in intra-FC, inter-FC, and EC. These results may help to explain the pathophysiological mechanism of anti-NMDAR encephalitis.
RESUMO
Autism spectrum disorder (ASD) and Attention-deficit/hyperactivity disorder (ADHD) are two typical neurodevelopmental disorders that have a long-term impact on physical and mental health. ASD is usually comorbid with ADHD and thus shares highly overlapping clinical symptoms. Delineating the shared and distinct neurophysiological profiles is important to uncover the neurobiological mechanisms to guide better therapy. In this study, we aimed to establish the behaviors, functional connectome, and network properties differences between ASD, ADHD-Combined, and ADHD-Inattentive using resting-state functional magnetic resonance imaging. We used the non-negative matrix fraction method to define personalized large-scale functional networks for each participant. The individual large-scale functional network connectivity (FNC) and graph-theory-based complex network analyses were executed and identified shared and disorder-specific differences in FNCs and network attributes. In addition, edge-wise functional connectivity analysis revealed abnormal edge co-fluctuation amplitude and number of transitions among different groups. Taken together, our study revealed disorder-specific and -shared regional and edge-wise functional connectivity and network differences for ASD and ADHD using an individual-level functional network mapping approach, which provides new evidence for the brain functional abnormalities in ASD and ADHD and facilitates understanding the neurobiological basis for both disorders.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Conectoma , Humanos , Imageamento por Ressonância Magnética , Cognição , EncéfaloRESUMO
INTRODUCTION: Electroconvulsive therapy (ECT) is widely used for treatment-resistant depression. However, it is unclear whether/how ECT can be targeted to affect brain regions and circuits in the brain to dynamically regulate mood and cognition. METHODS: This study used brain entropy (BEN) to measure the irregular levels of brain systems in 46 major depressive disorder (MDD) patients before and after ECT treatment. Functional connectivity (FC) was further adopted to reveal changes of functional couplings. Moreover, transcriptomic and neurotransmitter receptor data were used to reveal genetic and molecular basis of the changes of BEN and functional connectivities. RESULTS: Compared to pretreatment, the BEN in the posterior cerebellar lobe (PCL) significantly decreased and FC between the PCL and the right temporal pole (TP) significantly increased in MDD patients after treatment. Moreover, we found that these changes of BEN and FC were closely associated with genes' expression profiles involved in MAPK signaling pathway, GABAergic synapse, and dopaminergic synapse and were significantly correlated with the receptor/transporter density of 5-HT, norepinephrine, glutamate, etc. CONCLUSION: These findings suggest that loops in the cerebellum and TP are crucial for ECT regulation of mood and cognition, which provides new evidence for the antidepressant effects of ECT and the potential molecular mechanism leading to cognitive impairment.
Assuntos
Transtorno Depressivo Maior , Eletroconvulsoterapia , Humanos , Transtorno Depressivo Maior/terapia , Entropia , Encéfalo , Lobo Temporal , Imageamento por Ressonância MagnéticaRESUMO
OBJECTIVE: Restless legs syndrome (RLS) has serious effects on patients' sleep quality, physical and mental health. However, the pathophysiological mechanisms of RLS remain unclear. This study utilized both static and dynamic functional activity and connectivity analyses approaches as well as effective connectivity analysis to reveal the neurophysiological basis of RLS. METHODS: The resting-state functional MRI (rs-fMRI) data from 32 patients with RLS and 33 age-, and gender-matched healthy control (HC) were collected. Dynamic and static amplitude of low frequency fluctuation (ALFF), functional connectivity (FC), and Granger causality analysis (GCA) were employed to reveal the abnormal functional activities and couplings in patients with RLS. RESULTS: RLS patients showed over-activities in left parahippocampus and right cerebellum, hyper-connectivities of right cerebellum with left basal ganglia, left postcentral gyrus and right precentral gyrus, and enhanced effective connectivity from right cerebellum to left postcentral gyrus compared to HC. CONCLUSIONS: Abnormal cerebellum-basal ganglia-sensorimotor cortex circuit may be the underlying neuropathological basis of RLS. Our findings highlight the important role of right cerebellum in the onset of RLS and suggest right cerebellum may be a potential target for precision therapy.
Assuntos
Córtex Motor , Síndrome das Pernas Inquietas , Humanos , Imageamento por Ressonância Magnética , Cerebelo/diagnóstico por imagem , Qualidade do SonoRESUMO
The upper limit in LED quantum efficiency from conventional closed-shell molecules is 25% as dictated by singlet and triplet spin statistics. Spin-doublet organic molecules are attractive candidates to exceed this limit, thanks to their 100% theoretical quantum efficiency in radiative recombination. However, examples of stable spin-doublet molecules in the solid state are rare. Here we show broad-band near-infrared emission in the columnar π-π stacked tetrathiafulvalene (TTF) in a metal organic framework (MOF) single crystal. The broad emission is similar to known TTF+⢠doublet emission and is stabilized in the MOF crystal. This interpretation is supported by the observation of enhanced PL emission following UV oxidation of the MOF crystal to increase the doublet concentration. The findings suggest tetrathiafulvalene-based MOFs as promising materials for near-IR light emission and the MOF structure may be a general strategy to stabilize radical cation species in the solid state.