Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 21(1): 24, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760761

RESUMO

BACKGROUND: Significant variations exist in the forms of ZnO, making it impossible to test all forms in in vivo inhalation studies. Hence, grouping and read-across is a common approach under REACH to evaluate the toxicological profile of familiar substances. The objective of this paper is to investigate the potential role of dissolution, size, or coating in grouping ZnO (nano)forms for the purpose of hazard assessment. We performed a 90-day inhalation study (OECD test guideline no. (TG) 413) in rats combined with a reproduction/developmental (neuro)toxicity screening test (TG 421/424/426) with coated and uncoated ZnO nanoforms in comparison with microscale ZnO particles and soluble zinc sulfate. In addition, genotoxicity in the nasal cavity, lungs, liver, and bone marrow was examined via comet assay (TG 489) after 14-day inhalation exposure. RESULTS: ZnO nanoparticles caused local toxicity in the respiratory tract. Systemic effects that were not related to the local irritation were not observed. There was no indication of impaired fertility, developmental toxicity, or developmental neurotoxicity. No indication for genotoxicity of any of the test substances was observed. Local effects were similar across the different ZnO test substances and were reversible after the end of the exposure. CONCLUSION: With exception of local toxicity, this study could not confirm the occasional findings in some of the previous studies regarding the above-mentioned toxicological endpoints. The two representative ZnO nanoforms and the microscale particles showed similar local effects. The ZnO nanoforms most likely exhibit their effects by zinc ions as no particles could be detected after the end of the exposure, and exposure to rapidly soluble zinc sulfate had similar effects. Obviously, material differences between the ZnO particles do not substantially alter their toxicokinetics and toxicodynamics. The grouping of ZnO nanoforms into a set of similar nanoforms is justified by these observations.


Assuntos
Exposição por Inalação , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Masculino , Feminino , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Tamanho da Partícula , Administração por Inalação , Dano ao DNA , Ratos , Ensaio Cometa , Ratos Wistar , Reprodução/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo
2.
Chem Res Toxicol ; 35(6): 963-980, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35593714

RESUMO

Dissolution of inhaled engineered nanomaterials (ENM) under physiological conditions is essential to predict the clearance of the ENM from the lungs and to assess their biodurability and the potential effects of released ions. Alveolar macrophage (AM) lysosomes contain a pH 4.5 saline brine with enzymes and other components. Different types of artificial phagolysosomal simulant fluids (PSFs) have been developed for dissolution testing, but the consequence of using different media is not known. In this study, we tested to which extent six fundamentally different PSFs affected the ENM dissolution kinetics and particle size as determined by a validated transmission electron microscopy (TEM) image analysis. Three lysosomal simulant media were consistent with each other and with in vivo clearance. These media predict the quick dissolution of ZnO, the partial dissolution of SiO2, and the very slow dissolution of TiO2. The valid media use either a mix of organic acids (with the total concentration below 0.5 g/L, thereof citric acid below 0.15 g/L) or another organic acid (KH phthalate). For several ENM, including ZnO, BaSO4, and CeO2, all these differences induce only minor modulation of the dissolution rates. Only for TiO2 and SiO2, the interaction with specific organic acids is highly sensitive, probably due to sequestration of the ions, and can lead to wrong predictions when compared to the in vivo behavior. The media that fail on TiO2 and SiO2 dissolution use citric acid at concentrations above 5 g/L (up to 28 g/L). In the present selection of ENM, fluids, and methods, the different lysosomal simulant fluids did not induce changes of particle morphology, except for small changes in SiO2 and BaSO4 particles most likely due to ion dissolution, reprecipitation, and coalescence between neighboring particles. Based on the current evidence, the particle size by TEM analysis is not a sufficiently sensitive analytical method to deduce the rate of ENM dissolution in physiological media. In summary, we recommend the standardization of ENM dissolution testing by one of the three valid lysosomal simulant fluids with determination of the dissolution rate and halftime by the quantification of ions. This recommendation was established for a continuous flow system but may be relevant as well for static (batch) solubility testing.


Assuntos
Nanoestruturas , Óxido de Zinco , Ácido Cítrico , Íons , Lisossomos , Tamanho da Partícula , Padrões de Referência , Dióxido de Silício , Solubilidade
3.
Small ; 17(15): e2005725, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33586349

RESUMO

Effects of nanomaterials are usually observed at higher concentrations in vitro compared to animal studies. This is pointing to differences between in vivo situations and generally less complex in vitro models. These differences concern toxicodynamics and the internal exposure (at the target cells of the in vitro and in vivo test system). The latter can be minimized by appropriate in vivo to in vitro dose extrapolations (IVIVE). An IVIVE six-step procedure is proposed here: 1) determine in vivo exposure; 2) identify in vivo organ burden at lowest observed adverse effect concentration; 3) extrapolate in vivo organ burden to in vitro effective dose; 4) extrapolate in vitro effective dose to nominal concentration; 5) set dose ranges to establish dose-response relationships; and 6) consider uncertainties and specificities of in vitro test system. Assessing the results of in vitro studies needs careful consideration of discrepancies between in vitro and in vivo models: apart from different endpoints (usually cellular responses in vitro and adverse effects on organs or organisms in vivo), nanomaterials can also have a different potency in relatively simple in vitro models and the more complex corresponding organ in vivo. IVIVE can, nonetheless, reduce the differences in exposures.


Assuntos
Nanoestruturas , Animais , Técnicas In Vitro , Nanoestruturas/toxicidade
4.
Regul Toxicol Pharmacol ; 124: 104988, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34224799

RESUMO

Here, we present a non-animal testing battery to identify PSLT (poorly soluble, low toxicity) substances based on their solubility in phagolysosomal lung fluid simulant, surface reactivity and effects on alveolar macrophages in vitro. This is exemplified by eleven organic pigments belonging to five chemical classes that cover a significant share of the European market. Three of the pigments were tested as both, nanoform and non-nanoform. The results obtained in this integrated non-animal testing battery qualified two pigments as non PSLT, one pigment as poorly soluble and eight pigments as poorly soluble and low toxicity in vitro. The low toxic potency of the eight PSLT and the one poorly soluble pigment was corroborated by short-term inhalation studies with rats. These pigments did not elicit apparent toxic effects at 10 mg/m3 (systemic and in the respiratory tract). One of the pigments, Diarylide Pigment Yellow 83 transparent, however, caused minimal infiltration of neutrophils; hence its low toxicity is ambiguous and needs further verification or falsification. The present test battery provides an opportunity to identify PSLT-properties of test substances to prioritise particles for further development. Thus, it can help to reduce animal testing and steer product development towards safe applications.


Assuntos
Alternativas aos Testes com Animais/métodos , Corantes/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , Administração por Inalação , Animais , Linhagem Celular , Corantes/química , Masculino , Tamanho da Partícula , Ratos , Solubilidade , Testes de Toxicidade Subaguda/métodos
5.
Toxicol Pathol ; 48(3): 446-464, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32162596

RESUMO

Following inhalation and deposition in the alveolar region at sufficient dose, biopersistent (nano)materials generally provoke pulmonary inflammation. Alveolar macrophages (AMs) are mediators of pulmonary immune responses and were broadly categorized in pro-inflammatory M1 and anti-inflammatory M2 macrophages. This study aimed at identifying AM phenotype as M1 or M2 upon short-term inhalation exposure to different (nano)materials followed by a postexposure period. Phenotyping of AM was retrospectively performed using immunohistochemistry. M1 (CD68+iNOS+) and M2 (CD68+CD206+ and CD68+ArgI+) AMs were characterized in formalin-fixed, paraffin-embedded lung tissue of rats exposed for 6 hours/day for 5 days to air, 100 mg/m3 nano-TiO2, 25 mg/m3 nano-CeO2, 32 mg/m3 multiwalled carbon nanotubes, or 100 mg/m3 micron-sized quartz. During acute inflammation, relative numbers of M1 AMs were markedly increased, whereas relative numbers of M2 were generally decreased compared to control. Following an exposure-free period, changes in iNOS or CD206 expression correlated with persistence, regression, or progression of inflammation, suggesting a role of M1/M2 AMs in the pathogenesis of pulmonary inflammation. However, no clear correlation of AM subpopulations with qualitatively distinct histopathological findings caused by different (nano)materials was found. A more detailed understanding of the processes underlaying these morphological changes is needed to identify biomarkers for different histopathological outcomes.


Assuntos
Macrófagos Alveolares/imunologia , Nanoestruturas/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/imunologia , Administração por Inalação , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Cério/toxicidade , Masculino , Nanotubos de Carbono/toxicidade , Quartzo/toxicidade , Ratos , Ratos Wistar , Estudos Retrospectivos , Titânio/toxicidade
6.
Inhal Toxicol ; 30(7-8): 273-286, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30286672

RESUMO

Considerable differences in pulmonary responses have been observed in animals exposed to cerium dioxide nanoparticles via inhalation. These differences in pulmonary toxicity might be explained by differences in lung deposition, species susceptibility or physicochemical characteristics of the tested cerium dioxide nanoforms (i.e. same chemical substance, different size, shape, surface area or surface chemistry). In order to distinguish the relative importance of these different influencing factors, we performed a detailed analysis of the data from several inhalation studies with different exposure durations, species and nanoforms, namely published data on NM211 and NM212 (JRC repository), NanoAmor (commercially available) and our published and unpublished data on PROM (industry provided). Data were analyzed by comparing the observed pulmonary responses at similar external and internal dose levels. Our analyses confirm that rats are more sensitive to developing pulmonary inflammation compared to mice. The observed differences in responses do not result purely from differences in the delivered and retained doses (expressed in particle mass as well as surface area). In addition, the different nanoforms assessed showed differences in toxic potency likely due to differences in their physicochemical parameters. Primary particle and aggregate/agglomerate size distributions have a substantial impact on the deposited dose and consequently on the pulmonary response. However, in our evaluation size could not fully explain the difference observed in the analyzed studies indicating that the pulmonary response also depends on other physicochemical characteristics of the particles. It remains to be determined to what extent these findings can be generalized to other poorly soluble nanomaterials.

7.
Mutagenesis ; 32(1): 13-22, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26861493

RESUMO

In the course of a 2-year combined chronic toxicity-carcinogenicity study performed according to Organisation for Economic Co-operation and Development (OECD) Test Guideline 453, systemic (blood cell) genotoxicity of two OECD representative nanomaterials, CeO2 NM-212 and BaSO4 upon 3- or 6-month inhalation exposure to rats was assessed. DNA effects were analysed in leukocytes using the alkaline Comet assay, gene mutations and chromosome aberrations were measured in erythrocytes using the flow cytometric Pig-a gene mutation assay and the micronucleus test (applying both microscopic and flow cytometric evaluation), respectively. Since nano-sized CeO2 elicited lung effects at concentrations of 5mg/m3 (burdens of 0.5mg/lung) in the preceding range-finding study, whereas nano-sized BaSO4 did not induce any effect, female rats were exposed to aerosol concentrations of 0.1 up to 3mg/m3 CeO2 or 50mg/m3 BaSO4 nanomaterials (6h/day; 5 days/week; whole-body exposure). The blood of animals treated with clean air served as negative control, whereas blood samples from rats treated orally with three doses of 20mg/kg body weight ethylnitrosourea at 24h intervals were used as positive controls. As expected, ethylnitrosourea elicited significant genotoxicity in the alkaline Comet and Pig-a gene mutation assays and in the micronucleus test. By contrast, 3- and 6-month CeO2 or BaSO4 nanomaterial inhalation exposure did not elicit significant findings in any of the genotoxicity tests. The results demonstrate that subchronic inhalation exposure to different low doses of CeO2 or to a high dose of BaSO4 nanomaterials does not induce genotoxicity on the rat hematopoietic system at the DNA, gene or chromosome levels.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA , Exposição por Inalação , Leucócitos/efeitos dos fármacos , Mutação , Nanoestruturas/toxicidade , Animais , Sulfato de Bário/farmacologia , Sulfato de Bário/toxicidade , Cério/farmacologia , Cério/toxicidade , DNA/efeitos dos fármacos , Feminino , Leucócitos/metabolismo , Testes de Mutagenicidade , Nanoestruturas/química , Ratos
8.
J Nanobiotechnology ; 14: 16, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26944705

RESUMO

BACKGROUND: Most in vitro studies investigating nanomaterial pulmonary toxicity poorly correlate to in vivo inhalation studies. Alveolar macrophages (AMs) play an outstanding role during inhalation exposure since they effectively clear the alveoli from particles. This study addresses the applicability of an in vitro alveolar macrophage assay to distinguish biologically active from passive nanomaterials. METHODS: Rat NR8383 alveolar macrophages were exposed to 18 inorganic nanomaterials, covering AlOOH, BaSO4, CeO2, Fe2O3, TiO2, ZrO2, and ZnO NMs, amorphous SiO2 and graphite nanoplatelets, and two nanosized organic pigments. ZrO2 and amorphous SiO2 were tested without and with surface functionalization. Non-nanosized quartz DQ12 and corundum were used as positive and negative controls, respectively. The test materials were incubated with the cells in protein-free culture medium. Lactate dehydrogenase, glucuronidase, and tumour necrosis factor alpha were assessed after 16 h. In parallel, H2O2 was assessed after 1.5 h. Using the no-observed-adverse-effect concentrations (NOAECs) from available rat short-term inhalation studies (STIS), the test materials were categorized as active (NOAEC < 10 mg/m(3)) or passive. RESULTS: In vitro data reflected the STIS categorization if a particle surface area-based threshold of <6000 mm(2)/mL was used to determine the biological relevance of the lowest observed significant in vitro effects. Significant effects that were recorded above this threshold were assessed as resulting from test material-unspecific cellular 'overload'. Test materials were assessed as active if ≥2 of the 4 in vitro parameters undercut this threshold. They were assessed as passive if 0 or 1 parameter was altered. An overall assay accuracy of 95 % was achieved. CONCLUSIONS: The in vitro NR8383 alveolar macrophage assay allows distinguishing active from passive nanomaterials. Thereby, it allows determining whether in vivo short-term inhalation testing is necessary for hazard assessment. Results may also be used to group nanomaterials by biological activity. Further work should aim at validating the assay.


Assuntos
Exposição por Inalação/efeitos adversos , Macrófagos Alveolares/efeitos dos fármacos , Nanoestruturas/administração & dosagem , Nanoestruturas/efeitos adversos , Animais , Linhagem Celular , Compostos Férricos/efeitos adversos , Grafite/efeitos adversos , Peróxido de Hidrogênio/efeitos adversos , Pulmão/efeitos dos fármacos , Tamanho da Partícula , Ratos , Dióxido de Silício/efeitos adversos , Titânio/efeitos adversos
9.
Inhal Toxicol ; 28(10): 463-79, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27387137

RESUMO

Diketopyrrolopyrroles (DPP) are a relatively new class of organic high-performance pigments. The present inhalation and particle characterization studies were performed to compare the effects of five DPP-based pigments (coarse and fine Pigment Red 254, coarse and fine meta-chloro DPP isomer and one form of mixed chlorinated DPP isomers) and compare it to coarse and fine inorganic Pigment Red 101. Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 h/day on 5 consecutive days. Target concentrations were 30 mg/m(3) as high dose for all compounds and selected based occupational exposure limits for respirable nuisance dust. Toxicity was determined after end of exposure and after 3-week recovery using broncho-alveolar lavage fluid (BALF) and microscopic examinations of the entire respiratory tract. Mixed chlorinated DPP isomers and coarse meta-chloro DPP isomer caused marginal changes in BALF, consisting of slight increases of polymorphonuclear neutrophils, and in case of coarse meta-chloro DPP increased MCP-1 and osteopontin levels. Mixed chlorinated DPP isomers, Pigment Red 254, and meta-chloro DPP caused pigment deposits and phagocytosis by alveolar macrophages, slight hypertrophy/hyperplasia of the bronchioles and alveolar ducts, but without evidence of inflammation. In contrast, only pigment deposition and pigment phagocytosis were observed after exposure to Pigment Red 101. All pigments were tolerated well and caused only marginal effects in BALF or no effects at all. Only minor effects were seen on the lung by microscopic examination. There was no evidence of systemic inflammation based on acute-phase protein levels in blood.


Assuntos
Corantes/toxicidade , Exposição por Inalação/efeitos adversos , Cetonas/toxicidade , Pirróis/toxicidade , Proteínas de Fase Aguda/análise , Animais , Bronquíolos/efeitos dos fármacos , Bronquíolos/patologia , Líquido da Lavagem Broncoalveolar/citologia , Inflamação , Pulmão/efeitos dos fármacos , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Exposição Ocupacional , Tamanho da Partícula , Fagocitose , Ratos Wistar , Testes de Toxicidade Aguda
10.
Toxicol Appl Pharmacol ; 276(1): 1-20, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24382512

RESUMO

The applicability of rat precision-cut lung slices (PCLuS) in detecting nanomaterial (NM) toxicity to the respiratory tract was investigated evaluating sixteen OECD reference NMs (TiO2, ZnO, CeO2, SiO2, Ag, multi-walled carbon nanotubes (MWCNTs)). Upon 24-hour test substance exposure, the PCLuS system was able to detect early events of NM toxicity: total protein, reduction in mitochondrial activity, caspase-3/-7 activation, glutathione depletion/increase, cytokine induction, and histopathological evaluation. Ion shedding NMS (ZnO and Ag) induced severe tissue destruction detected by the loss of total protein. Two anatase TiO2 NMs, CeO2 NMs, and two MWCNT caused significant (determined by trend analysis) cytotoxicity in the WST-1 assay. At non-cytotoxic concentrations, different TiO2 NMs and one MWCNT increased GSH levels, presumably a defense response to reactive oxygen species, and these substances further induced a variety of cytokines. One of the SiO2 NMs increased caspase-3/-7 activities at non-cytotoxic levels, and one rutile TiO2 only induced cytokines. Investigating these effects is, however, not sufficient to predict apical effects found in vivo. Reproducibility of test substance measurements was not fully satisfactory, especially in the GSH and cytokine assays. Effects were frequently observed in negative controls pointing to tissue slice vulnerability even though prepared and handled with utmost care. Comparisons of the effects observed in the PCLuS to in vivo effects reveal some concordances for the metal oxide NMs, but less so for the MWCNT. The highest effective dosages, however, exceeded those reported for rat short-term inhalation studies. To become applicable for NM testing, the PCLuS system requires test protocol optimization.


Assuntos
Apoptose/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanotubos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Alternativas ao Uso de Animais , Animais , Sobrevivência Celular , Fenômenos Químicos , Cruzamentos Genéticos , Citocinas/metabolismo , Emulsificantes/química , Feminino , Glutationa/agonistas , Glutationa/metabolismo , Técnicas In Vitro , Pulmão/citologia , Pulmão/imunologia , Pulmão/metabolismo , Teste de Materiais/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/ultraestrutura , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Soroalbumina Bovina/química , Sonicação , Regulação para Cima/efeitos dos fármacos
11.
Part Fibre Toxicol ; 11: 55, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25331813

RESUMO

BACKGROUND: Nanoparticulate barium sulfate has potential novel applications and wide use in the polymer and paint industries. A short-term inhalation study on barium sulfate nanoparticles (BaSO4 NPs) was previously published [Part Fibre Toxicol 11:16, 2014]. We performed comprehensive biokinetic studies of ¹³¹BaSO4 NPs administered via different routes and of acute and subchronic pulmonary responses to instilled or inhaled BaSO4 in rats. METHODS: We compared the tissue distribution of ¹³¹Ba over 28 days after intratracheal (IT) instillation, and over 7 days after gavage and intravenous (IV) injection of ¹³¹BaSO4. Rats were exposed to 50 mg/m³ BaSO4 aerosol for 4 or 13 weeks (6 h/day, 5 consecutive days/week), and then gross and histopathologic, blood and bronchoalveolar lavage (BAL) fluid analyses were performed. BAL fluid from instilled rats was also analyzed. RESULTS: Inhaled BaSO4 NPs showed no toxicity after 4-week exposure, but a slight neutrophil increase in BAL after 13-week exposure was observed. Lung burden of inhaled BaSO4 NPs after 4-week exposure (0.84 ± 0.18 mg/lung) decreased by 95% over 34 days. Instilled BaSO4 NPs caused dose-dependent inflammatory responses in the lungs. Instilled BaSO4 NPs (0.28 mg/lung) was cleared with a half-life of ≈ 9.6 days. Translocated ¹³¹Ba from the lungs was predominantly found in the bone (29%). Only 0.15% of gavaged dose was detected in all organs at 7 days. IV-injected ¹³¹BaSO4 NPs were predominantly localized in the liver, spleen, lungs and bone at 2 hours, but redistributed from the liver to bone over time. Fecal excretion was the dominant elimination pathway for all three routes of exposure. CONCLUSIONS: Pulmonary exposure to instilled BaSO4 NPs caused dose-dependent lung injury and inflammation. Four-week and 13-week inhalation exposures to a high concentration (50 mg/m³) of BaSO4 NPs elicited minimal pulmonary response and no systemic effects. Instilled and inhaled BaSO4 NPs were cleared quickly yet resulted in higher tissue retention than when ingested. Particle dissolution is a likely mechanism. Injected BaSO4 NPs localized in the reticuloendothelial organs and redistributed to the bone over time. BaSO4 NP exhibited lower toxicity and biopersistence in the lungs compared to other poorly soluble NPs such as CeO2 and TiO2.


Assuntos
Poluentes Atmosféricos/toxicidade , Sulfato de Bário/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Pneumonia/induzido quimicamente , Mucosa Respiratória/efeitos dos fármacos , Administração Oral , Poluentes Atmosféricos/análise , Animais , Radioisótopos de Bário , Sulfato de Bário/administração & dosagem , Sulfato de Bário/análise , Sulfato de Bário/química , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Injeções Intravenosas , Absorção Intestinal , Eliminação Intestinal , Pulmão/química , Pulmão/imunologia , Pulmão/patologia , Masculino , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Ratos Endogâmicos WKY , Mucosa Respiratória/química , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Absorção pelo Trato Respiratório , Solubilidade , Distribuição Tecidual , Testes de Toxicidade Aguda , Testes de Toxicidade Subcrônica , Toxicocinética
12.
Part Fibre Toxicol ; 11: 16, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24708749

RESUMO

BACKGROUND: A standard short-term inhalation study (STIS) was applied for hazard assessment of 13 metal oxide nanomaterials and micron-scale zinc oxide. METHODS: Rats were exposed to test material aerosols (ranging from 0.5 to 50 mg/m3) for five consecutive days with 14- or 21-day post-exposure observation. Bronchoalveolar lavage fluid (BALF) and histopathological sections of the entire respiratory tract were examined. Pulmonary deposition and clearance and test material translocation into extra-pulmonary organs were assessed. RESULTS: Inhaled nanomaterials were found in the lung, in alveolar macrophages, and in the draining lymph nodes. Polyacrylate-coated silica was also found in the spleen, and both zinc oxides elicited olfactory epithelium necrosis. None of the other nanomaterials was recorded in extra-pulmonary organs. Eight nanomaterials did not elicit pulmonary effects, and their no observed adverse effect concentrations (NOAECs) were at least 10 mg/m3. Five materials (coated nano-TiO2, both ZnO, both CeO2) evoked concentration-dependent transient pulmonary inflammation. Most effects were at least partially reversible during the post-exposure period.Based on the NOAECs that were derived from quantitative parameters, with BALF polymorphonuclear (PMN) neutrophil counts and total protein concentration being most sensitive, or from the severity of histopathological findings, the materials were ranked by increasing toxic potency into 3 grades: lower toxic potency: BaSO4; SiO2.acrylate (by local NOAEC); SiO2.PEG; SiO2.phosphate; SiO2.amino; nano-ZrO2; ZrO2.TODA; ZrO2.acrylate; medium toxic potency: SiO2.naked; higher toxic potency: coated nano-TiO2; nano-CeO2; Al-doped nano-CeO2; micron-scale ZnO; coated nano-ZnO (and SiO2.acrylate by systemic no observed effect concentration (NOEC)). CONCLUSION: The STIS revealed the type of effects of 13 nanomaterials, and micron-scale ZnO, information on their toxic potency, and the location and reversibility of effects. Assessment of lung burden and material translocation provided preliminary biokinetic information. Based upon the study results, the STIS protocol was re-assessed and preliminary suggestions regarding the grouping of nanomaterials for safety assessment were spelled out.


Assuntos
Nanoestruturas/toxicidade , Administração por Inalação , Aerossóis , Animais , Apoptose/efeitos dos fármacos , Sulfato de Bário/toxicidade , Carga Corporal (Radioterapia) , Líquido da Lavagem Broncoalveolar , Proliferação de Células/efeitos dos fármacos , Cério/toxicidade , Materiais Revestidos Biocompatíveis , Pulmão/patologia , Masculino , Microscopia Eletrônica de Varredura , Nanoestruturas/administração & dosagem , Óxidos/toxicidade , Ratos , Ratos Wistar , Dióxido de Silício/toxicidade , Titânio/toxicidade , Aumento de Peso/efeitos dos fármacos , Óxido de Zinco/toxicidade , Zircônio/toxicidade
13.
Arch Toxicol ; 88(11): 2033-59, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25273020

RESUMO

Two Ceria nanomaterials (NM-211 and NM-212) were tested for inhalation toxicity and organ burdens in order to design a chronic and carcinogenicity inhalation study (OECD TG No. 453). Rats inhaled aerosol concentrations of 0.5, 5, and 25 mg/m(3) by whole-body exposure for 6 h/day on 5 consecutive days for 1 or 4 weeks with a post-exposure period of 24 or 129 days, respectively. Lungs were examined by bronchoalveolar lavage and histopathology. Inhaled Ceria is deposited in the lung and cleared with a half-time of 40 days; at aerosol concentrations higher than 0.5 mg/m(3), this clearance was impaired resulting in a half-time above 200 days (25 mg/m(3)). After 5 days, Ceria (>0.5 mg/m(3)) induced an early inflammatory reaction by increases of neutrophils in the lung which decreased with time, with sustained exposure, and also after the exposure was terminated (during the post-exposure period). The neutrophil number observed in bronchoalveolar lavage fluid (BALF) was decreasing and supplemented by mononuclear cells, especially macrophages which were visible in histopathology but not in BALF. Further progression to granulomatous inflammation was observed 4 weeks post-exposure. The surface area of the particles provided a dose metrics with the best correlation of the two Ceria's inflammatory responses; hence, the inflammation appears to be directed by the particle surface rather than mass or volume in the lung. Observing the time course of lung burden and inflammation, it appears that the dose rate of particle deposition drove an initial inflammatory reaction by neutrophils. The later phase (after 4 weeks) was dominated by mononuclear cells, especially macrophages. The progression toward the subsequent granulomatous reaction was driven by the duration and amount of the particles in the lung. The further progression of the biological response will be determined in the ongoing long-term study.


Assuntos
Cério/administração & dosagem , Exposição por Inalação/efeitos adversos , Pulmão/metabolismo , Nanoestruturas , Administração por Inalação , Aerossóis , Animais , Líquido da Lavagem Broncoalveolar , Cério/farmacocinética , Cério/toxicidade , Relação Dose-Resposta a Droga , Feminino , Granuloma/induzido quimicamente , Granuloma/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Pulmão/patologia , Macrófagos/metabolismo , Neutrófilos/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo
14.
Part Fibre Toxicol ; 10: 23, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23773277

RESUMO

BACKGROUND: Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets. METHODS: In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract. RESULTS: No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung. CONCLUSIONS: The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select safer alternatives for a given application.


Assuntos
Grafite/toxicidade , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Fuligem/toxicidade , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Granuloma do Sistema Respiratório/induzido quimicamente , Grafite/química , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Nanotubos de Carbono/química , Ratos Wistar , Fuligem/química , Propriedades de Superfície , Fatores de Tempo
15.
Front Toxicol ; 5: 1258861, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38115972

RESUMO

This case study aims to describe the dilemma faced when exposing rats to very high concentrations of fine, pulverulent materials for acute inhalation studies and to address the regulatory question of whether the effects seen here are relevant to humans and the subject of classification according to the Globally Harmonized System of Classification and Labeling of Chemicals (GHS). Many powders match the definition of nanomaterials in the EU; therefore, information on acute inhalation testing of powders up to the GHS cutoff of 5 mg/L is required. However, testing rats at such a high aerosol concentration can cause physical obstruction of the airways and even mortality by suffocation. Therefore, to evaluate whether the physical effects on airway obstruction in rats exposed to 5 mg/L for 4 hours and alternative exposures to 1 and 2 mg/L are relevant for humans, an in silico evaluation of aerosol deposition was conducted using the multiple-path particle dosimetry (MPPD) model. For this evaluation, actual exposure conditions for an organic, nano-sized pigment which produced 100% lethality in rats at 5 mg/L, but not at 1 mg/L, were used to assess the potential for airway obstruction in rats and accordingly in humans. As an indicator of the potential for airway obstruction, the ratio of the diameter of the deposited, aggregated aerosol to airway diameter was calculated for each exposure condition. For rats exposed to 5 mg/L for 4 h, approximately 75% of tracheobronchial and 22% of pulmonary/alveolar airways were considered vulnerable to significant or complete obstruction (ratios >0.5). In humans, an equivalent exposure resulted in just over 96% of human tracheobronchial airways that received deposited mass to airway diameter ratios between 0.3 and 0.4 (nasal) or 0.4 and 0.5 (oral), with no airways with ratios >0.5. For the pulmonary/alveolar region, ∼88% of the airways following nasal or oral breathing were predicted to have deposited aerosol diameter to airway diameter ratios <0.1, with no airways with ratios >0.5. Thus, the in silico results obtained for rats are in line with the pathological findings of the animal test. The predicted results in humans, however, affirm the hypothesis of a rat-specific high dose effect which does not justify a classification according to GHS.

16.
Mutat Res ; 745(1-2): 51-7, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22172426

RESUMO

Nanomaterials are already used today and offer even greater use and benefits in the future. The progress of nanotechnology must be accompanied by investigations of their potential harmful effects. For airborne nanomaterials, lung toxicity is a major concern and obviously the particle size is discussed as a critical property directing adverse effects. While standard toxicological test methods are generally capable of detecting the toxic effects, the choice of relevant methods for nanomaterials is still discussed. We have investigated two genotoxic endpoints - alkaline Comet assay in lung tissue and micronucleation in polychromatic erythrocytes of the bone marrow - in a combined study 72 h after a single instillation of 18 µg gold nanoparticles (NP) into the trachea of male adult Wistar rats. The administration of three test materials differing only in their primary particle size (2, 20 and 200 nm) did not lead to relevant DNA damage in the mentioned tests. The measurement of clinical pathology parameters in bronchoalveolar lavage fluid (BALF) and blood indicated neither relevant local reactions in the animals' lungs nor adverse systemic effects. Minor histopathology findings occurred in the lung of the animals exposed to 20 nm and 200 nm sized nanomaterials. In conclusion, under the conditions of this study the different sized gold NP tested were non-genotoxic and showed no systemic and local adverse effects at the given dose.


Assuntos
Ouro/toxicidade , Pulmão/efeitos dos fármacos , Mutagênicos/toxicidade , Nanopartículas/toxicidade , Animais , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Pulmão/patologia , Testes para Micronúcleos , Tamanho da Partícula , Ratos , Ratos Wistar
17.
Arch Toxicol ; 86(7): 1021-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22576463

RESUMO

Nanomaterials (NM) offer great technological advantages but their risks to human health are still under discussion. For toxicological testing and evaluation, information on the toxicokinetics of NM is essential as it is different from that of most other xenobiotics. This review provides an overview on the toxicokinetics of NM available to date. The toxicokinetics of NM depends on particle size and shape, protein binding, agglomeration, hydrophobicity, surface charge and protein binding. In most studies with topical skin application, unintentional permeation and systemic availability were not observed; permeation for some NM with distinct properties was observed in animals. Upon inhalation, low levels of primary model nanoparticles became systemically available, but many real-world engineered NM aggregate in aerosols, do not disintegrate in the lung, and do not become systemically available. NM are prone to lymphatic transport, and many NM are taken up by the mononuclear phagocyte system (MPS) acting as a depot. Their half-life in blood depends on their uptake by MPS rather than their elimination from the body. NM reaching the GI tract are excreted with the feces, but of some NM low levels are absorbed and become systemically available. Some quantum dots were not observably excreted in urine nor in feces. Some model quantum dots, however, were efficiently excreted by the kidneys below, but not above 5-6 nm hydrodynamic diameter, while nanotubes 20-30 nm thick and 500-2,000 nm long were abundant in urine. NM are typically not metabolized. Some NM cross the blood-brain barrier favored by a negative surface charge.


Assuntos
Sistemas de Liberação de Medicamentos , Nanoestruturas , Farmacocinética , Xenobióticos/farmacocinética , Animais , Sistemas de Liberação de Medicamentos/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Feminino , Humanos , Masculino , Nanoestruturas/efeitos adversos , Nanoestruturas/química , Nanoestruturas/toxicidade , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Gravidez , Xenobióticos/efeitos adversos , Xenobióticos/química , Xenobióticos/toxicidade
18.
Arch Toxicol ; 86(7): 1137-51, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532024

RESUMO

A major health concern for nanomaterials is their potential toxic effect after inhalation of dusts. Correspondingly, the core element of tier 1 in the currently proposed integrated testing strategy (ITS) is a short-term rat inhalation study (STIS) for this route of exposure. STIS comprises a comprehensive scheme of biological effects and marker determination in order to generate appropriate information on early key elements of pathogenesis, such as inflammatory reactions in the lung and indications of effects in other organs. Within the STIS information on the persistence, progression and/or regression of effects is obtained. The STIS also addresses organ burden in the lung and potential translocation to other tissues. Up to now, STIS was performed in research projects and routine testing of nanomaterials. Meanwhile, rat STIS results for more than 20 nanomaterials are available including the representative nanomaterials listed by the Organization for Economic Cooperation and Development (OECD) working party on manufactured nanomaterials (WPMN), which has endorsed a list of representative manufactured nanomaterials (MN) as well as a set of relevant endpoints to be addressed. Here, results of STIS carried out with different nanomaterials are discussed as case studies. The ranking of different nanomaterials potential to induce adverse effects and the ranking of the respective NOAEC are the same among the STIS and the corresponding subchronic and chronic studies. In another case study, a translocation of a coated silica nanomaterial was judged critical for its safety assessment. Thus, STIS enables application of the proposed ITS, as long as reliable and relevant in vitro methods for the tier 1 testing are still missing. Compared to traditional subacute and subchronic inhalation testing (according to OECD test guidelines 412 and 413), STIS uses less animals and resources and offers additional information on organ burden and progression or regression of potential effects.


Assuntos
Poluentes Atmosféricos/toxicidade , Teste de Materiais , Nanoestruturas/toxicidade , Material Particulado/toxicidade , Testes de Toxicidade , Administração por Inalação , Aerossóis , Poluentes Atmosféricos/química , Poluentes Atmosféricos/farmacocinética , Alternativas ao Uso de Animais , Animais , Pesquisa Biomédica , Humanos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Tamanho da Partícula , Material Particulado/administração & dosagem , Material Particulado/química , Material Particulado/farmacocinética , Ratos , Projetos de Pesquisa , Distribuição Tecidual
19.
Arch Toxicol ; 86(7): 1077-87, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22466068

RESUMO

Nanotechnology creates new possibilities to control and improve material properties for civil infrastructure. Special focus in this area is put on Portland cement and gypsum. Together their annual production is by far larger than for any other material worldwide. Nanomodification of these materials can be done during the few hours between dissolution and hardening, especially by nucleation of the re-crystallization with suitable colloids. Here we report first results in homogeneous seeding of the precipitation of calcium silicate hydrates within a real Portland cement composition. The occupational safety during the production phase and during mixing of concrete paste is addressed in detail by in vivo testing. We perform 5-day inhalation with 21-day recovery in rats and analyze organ-specific toxicity and 71 endpoints from bronchoalveolar lavage (BALF) and blood. In BALF parameters, no test-related changes were observed, indicating the generally low toxicity of the test material. Some mild lesions were observed in larynx level. In the lungs, all animals of the 50 mg/m³ concentration group revealed a minimal to mild increase in alveolar macrophages, which recovered back to control level.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Compostos de Cálcio/toxicidade , Materiais de Construção/toxicidade , Laringe/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanoestruturas/toxicidade , Silicatos/toxicidade , Administração por Inalação , Poluentes Ocupacionais do Ar/química , Animais , Líquido da Lavagem Broncoalveolar/química , Compostos de Cálcio/administração & dosagem , Compostos de Cálcio/química , Materiais de Construção/análise , Relação Dose-Resposta a Droga , Alemanha , Humanos , Laringe/imunologia , Laringe/patologia , Pulmão/imunologia , Pulmão/patologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Masculino , Teste de Materiais , Metaplasia , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Ratos , Ratos Wistar , Medição de Risco , Silicatos/administração & dosagem , Silicatos/química
20.
Inhal Toxicol ; 24(14): 939-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23216155

RESUMO

CONTEXT: In experimental studies with nanomaterials where translocation to secondary organs was observed, the particle sizes were smaller than 20 nm and were mostly produced by spark generators. Engineered nanostructured materials form microsize aggregates/agglomerates. Thus, it is unclear whether primary nanoparticles or their small aggregates/agglomerates occur in non-negligible concentrations after exposure to real-world materials in the lung. OBJECTIVE: We dedicated an inhalation study with nanostructured TiO(2) to the following research question: Does the particle size distribution in the lung contain a relevant subdistribution of nanoparticles? METHODS: Six rats were exposed to 88 mg/m(3) TiO(2) over 5 days with 20% (count fraction) and <0.5% (mass fraction) of nanoscaled objects. Three animals were sacrificed after cessation of exposure (5 days), others after a recovery period of 14 days. Particle sizes were determined morphometrically by transmission electron microscopy (TEM) of ultra-thin lung slices. Since the particles visible are two-dimensional surrogates of three-dimensional structures we developed a model to estimate expected numbers of particle diameters below 100 nm due to the TEM slicing bias. Observed and expected numbers were contrasted in 2 × 2 tables by odds ratios. RESULTS: Comparisons of observed and expected numbers did not present evidence in favor of the presence of nanoparticles in the rat lungs. In simultaneously exposed satellite animals agglomerates of nanostructured TiO(2) were observed in the mediastinal lymph nodes but not in secondary organs. CONCLUSIONS: For nanostructured TiO(2), the deposition of nanoscaled particles in the lung seem to play a negligible role.


Assuntos
Pulmão/metabolismo , Microscopia Eletrônica de Transmissão , Nanopartículas , Titânio/administração & dosagem , Titânio/metabolismo , Aerossóis , Animais , Exposição por Inalação , Limite de Detecção , Pulmão/ultraestrutura , Linfonodos/metabolismo , Linfonodos/ultraestrutura , Masculino , Modelos Estatísticos , Razão de Chances , Tamanho da Partícula , Ratos , Ratos Wistar , Fatores de Tempo , Distribuição Tecidual , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA