Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35456585

RESUMO

Objectives: Enterococcus faecalis is a Gram-positive commensal bacterium that possesses various survival and virulence factors, including the ability to compete with other microorganisms, invade dentinal tubules, and resist nutritional deprivation. E. faecalis is associated with persistent endodontic infections where biofilms formed by this bacterium in the root canal frequently resist dental therapies. Aseptic techniques, such as the inclusion of sodium hypochlorite, are the most commonly used methods to treat E. faecalis infections within the root canal system. In this work, we assess the effectiveness of probiotic strains to prevent the regrowth of E. faecalis biofilm cells treated by sodium hypochlorite irrigation. Methods: First, methods are presented that evaluate the effects of short-term exposure to sodium-hypochlorite on established E. faecalis. Next, we evaluate the effects of the secreted products of probiotic strains on biofilm cells and planktonic cells. Results: Sodium hypochlorite, the treatment conventionally used to decontaminate infected root canal systems, was extremely toxic to planktonic bacteria but did not fully eradicate biofilm cells. Furthermore, low concentrations of sodium hypochlorite induced eDNA dependent biofilms. Strikingly, conditioned medium from the probiotic bacteria Lactobacillus plantarum and Lactobacillus casei was sufficient to fully prevent the regrowth of treated biofilms while showing reduced potency towards planktonic cells. Conclusion: Sodium hypochlorite irrigations may contribute to the persistence of biofilm cells if used at concentrations lower than 3%. Probiotic strains and their products represent a new reservoir of biofilm therapies for E. faecalis infections formed in the root canal system.

2.
Nat Commun ; 13(1): 431, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058430

RESUMO

Microbial communities employ a variety of complex strategies to compete successfully against competitors sharing their niche, with antibiotic production being a common strategy of aggression. Here, by systematic evaluation of four non-ribosomal peptides/polyketide (NRPs/PKS) antibiotics produced by Bacillus subtilis clade, we revealed that they acted synergistically to effectively eliminate phylogenetically distinct competitors. The production of these antibiotics came with a fitness cost manifested in growth inhibition, rendering their synthesis uneconomical when growing in proximity to a phylogenetically close species, carrying resistance against the same antibiotics. To resolve this conflict and ease the fitness cost, antibiotic production was only induced by the presence of a peptidoglycan cue from a sensitive competitor, a response mediated by the global regulator of cellular competence, ComA. These results experimentally demonstrate a general ecological concept - closely related communities are favoured during competition, due to compatibility in attack and defence mechanisms.


Assuntos
Antibacterianos/biossíntese , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Peptidoglicano/metabolismo , Vias Biossintéticas , Nucleotídeos/metabolismo , Peptídeos/metabolismo , Plâncton/crescimento & desenvolvimento , Policetídeos/metabolismo , Regiões Promotoras Genéticas/genética , Ribossomos/metabolismo , Transcrição Gênica
3.
Comput Struct Biotechnol J ; 20: 15-25, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34976308

RESUMO

In nature, bacteria frequently reside in differentiated communities or biofilms. These multicellular communities are held together by self-produced polymers that allow the community members to adhere to the surface as well as to neighbor bacteria. Here, we report that exopolysaccharides prevent Bacillus subtilis from co-aggregating with a distantly related bacterium Bacillus mycoides, while maintaining their role in promoting self-adhesion and co-adhesion with phylogenetically related bacterium, Bacillus atrophaeus. The defensive role of the exopolysaccharides is due to the specific regulation of bacillaene. Single cell analysis of biofilm and free-living bacterial cells using imaging flow cytometry confirmed a specific role for the exopolysaccharides in microbial competition repelling B. mycoides. Unlike exopolysaccharides, the matrix protein TasA induced bacillaene but inhibited the expression of the biosynthetic clusters for surfactin, and therefore its overall effect on microbial competition during floating biofilm formation was neutral. Thus, the exopolysaccharides provide a dual fitness advantage for biofilm-forming cells, as it acts to promote co-aggregation of related species, as well as, a secreted cue for chemical interference with non-compatible partners. These results experimentally demonstrate a general assembly principle of complex communities and provides an appealing explanation for how closely related species are favored during community assembly. Furthermore, the differential regulation of surfactin and bacillaene by the extracellular matrix may explain the spatio-temporal gradients of antibiotic production within biofilms.

4.
Front Microbiol ; 13: 949932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353463

RESUMO

Lactobacillaceae are Gram-positive rods, facultative anaerobes, and belong to the lactic acid bacteria (LAB) that frequently serve as probiotics. We systematically compared five LAB strains for the effects of different carbohydrates on their free-living and biofilm lifestyles. We found that fermentable sugars triggered an altered carrying capacity with strain specificity during planktonic growth. In addition, heterogeneous response to fermentable sugar was manifested in microbial aggregation (measured by imaging flow cytometry), colony development, and attachment to mucin. The acid production capacities of the strains were compatible and could not account for heterogeneity in their differential carrying capacity in liquid and on a solid medium. Among tested LAB strains, L. paracasei, and L. rhamnosus GG survived self-imposed acid stress while L. acidophilus was extremely sensitive to its own glucose utilization acidic products. The addition of a buffering system during growth on a solid medium significantly improved the survival of most tested probiotic strains during fermentation, but the formation of biofilms and aggregation capacity were responsive to the carbohydrate provided rather than to the acidity. We suggest that the optimal performance of the beneficial microbiota members belonging to Lactobacillaceae varies as a function of the growth model and the dependency on a buffering system.

5.
iScience ; 25(5): 104234, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35521519

RESUMO

Biofilms are differentiated microbial communities held together by an extracellular matrix. µCT X-ray revealed structured mineralized areas within biofilms of lung pathogens belonging to two distant phyla - the proteobacteria Pseudomonas aeruginosa and the actinobacteria Mycobacterium abscessus. Furthermore, calcium chelation inhibited the assembly of complex bacterial structures for both organisms with little to no effect on cell growth. The molecular mechanisms promoting calcite scaffold formation were surprisingly conserved between the two pathogens as biofilm development was similarly impaired by genetic and biochemical inhibition of calcium uptake and carbonate accumulation. Moreover, chemical inhibition and mutations targeting mineralization significantly reduced the attachment of P. aeruginosa to the lung, as well as the subsequent damage inflicted by biofilms to lung tissues, and restored their sensitivity to antibiotics. This work offers underexplored druggable targets for antibiotics to combat otherwise untreatable biofilm infections.

6.
iScience ; 25(6): 104308, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35663026

RESUMO

In nature, bacteria reside in biofilms- multicellular differentiated communities held together by an extracellular matrix. This work identified a novel subpopulation-mineral-forming cells-that is essential for biofilm formation in Bacillus subtilis biofilms. This subpopulation contains an intracellular calcium-accumulating niche, in which the formation of a calcium carbonate mineral is initiated. As the biofilm colony develops, this mineral grows in a controlled manner, forming a functional macrostructure that serves the entire community. Consistently, biofilm development is prevented by the inhibition of calcium uptake. Our results provide a clear demonstration of the orchestrated production of calcite exoskeleton, critical to morphogenesis in simple prokaryotes.

7.
Front Cell Infect Microbiol ; 11: 722778, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557426

RESUMO

Beneficial and probiotic bacteria play an important role in conferring immunity of their hosts to a wide range of bacterial, viral, and fungal diseases. Bacillus subtilis is a Gram-positive bacterium that protects the plant from various pathogens due to its capacity to produce an extensive repertoire of antibiotics. At the same time, the plant microbiome is a highly competitive niche, with multiple microbial species competing for space and resources, a competition that can be determined by the antagonistic potential of each microbiome member. Therefore, regulating antibiotic production in the rhizosphere is of great importance for the elimination of pathogens and establishing beneficial host-associated communities. In this work, we used B. subtilis as a model to investigate the role of plant colonization in antibiotic production. Flow cytometry and imaging flow cytometry (IFC) analysis supported the notion that Arabidopsis thaliana specifically induced the transcription of the biosynthetic clusters for the non-ribosomal peptides surfactin, bacilysin, plipastatin, and the polyketide bacillaene. IFC was more robust in quantifying the inducing effects of A. thaliana, considering the overall heterogeneity of the population. Our results highlight IFC as a useful tool to study the effect of association with a plant host on bacterial gene expression. Furthermore, the common regulation of multiple biosynthetic clusters for antibiotic production by the plant can be translated to improve the performance and competitiveness of beneficial members of the plant microbiome.


Assuntos
Arabidopsis , Bacillus subtilis , Antibacterianos , Bacillus subtilis/genética , Genes Bacterianos , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA