Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 17(1): 157, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30285743

RESUMO

BACKGROUND: Outer membrane vesicles (OMVs) are nanoparticles released by Gram-negative bacteria and can be used as vaccines. Often, detergents are used to promote release of OMVs and to remove the toxic lipopolysaccharides. Lipopolysaccharides can be detoxified by genetic modification such that vesicles spontaneously produced by bacteria can be directly used as vaccines. The use of spontaneous OMVs has the advantage that no separate extraction step is required in the purification process. However, the productivity of spontaneous OMVs by bacteria at optimal growth conditions is low. One of many methods for increasing OMV formation is to reduce the linkage of the outer membrane to the peptidoglycan layer by knocking out the rmpM gene. A previous study showed that for Neisseria meningitidis this resulted in release of more OMVs. Furthermore, cysteine depletion was found to trigger OMV release and at the same time cause reduced growth and oxidative stress responses. Here we study the effect of growth rate and oxidative stress on OMV release. RESULTS: First, we identified using chemostat and accelerostat cultures of N. meningitidis that increasing the growth rate from 0.03 to 0.18 h-1 has a limited effect on OMV productivity. Thus, we hypothesized that oxidative stress is the trigger for OMV release and that oxidative stress can be introduced directly by increasing the dissolved oxygen tension of bacterial cultures. Slowly increasing oxygen concentrations in a N. meningitidis changestat showed that an increase from 30 to 150% air saturation improved OMV productivity four-fold. Batch cultures controlled at 100% air saturation increased OMV productivity three-fold over batch cultures controlled at 30% air saturation. CONCLUSION: Increased dissolved oxygen tension induces the release of outer membrane vesicles in N. meningitidis cultures. Since oxygen concentration is a well-controlled process parameter of bacterial cultures, this trigger can be applied as a convenient process parameter to induce OMV release in bacterial cultures. Improved productivity of OMVs not only improves the production costs of OMVs as vaccines, it also facilitates the use of OMVs as adjuvants, enzyme carriers, or cell-specific drug delivery vehicles.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Neisseria meningitidis/patogenicidade , Oxigênio/metabolismo , Estresse Oxidativo
2.
J Ind Microbiol Biotechnol ; 35(6): 569-78, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18247072

RESUMO

The fungus Rhizopus oryzae converts both glucose and xylose under aerobic conditions into chirally pure L+-lactic acid with by-products such as xylitol, glycerol, ethanol, carbon dioxide and fungal biomass. In this paper, we demonstrate that the production of lactic acid by R. oryzae CBS 112.07 only occurs under growing conditions. Deprivation of nutrients such as nitrogen, essential for fungal biomass formation, resulted in a cessation of lactic acid production. Complete xylose utilisation required a significantly lower C/N ratio (61/1) compared to glucose (201/1), caused by higher fungal biomass yields that were obtained with xylose as substrate. Decreasing the oxygen transfer rate resulted in decline of xylose consumption rates, whereas the conversion of glucose by R. oryzae was less affected. Both results were linked to the fact that R. oryzae CBS 112.07 utilises xylose via the two-step reduction/oxidation route. The consequences of these effects for R. oryzae as a potential lactic acid producer are discussed.


Assuntos
Ácido Láctico/biossíntese , Rhizopus/crescimento & desenvolvimento , Rhizopus/metabolismo , Xilose/metabolismo , Enzimas/metabolismo , Fermentação , Glucose/metabolismo , Ácido Láctico/metabolismo , Oxigênio/metabolismo , Rhizopus/enzimologia
3.
Appl Microbiol Biotechnol ; 78(5): 751-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18247027

RESUMO

Conventional processes for lignocellulose-to-organic acid conversion requires pretreatment, enzymatic hydrolysis, and microbial fermentation. In this study, lime-treated wheat straw was hydrolyzed and fermented simultaneously to lactic acid by an enzyme preparation and Bacillus coagulans DSM 2314. Decrease in pH because of lactic acid formation was partially adjusted by automatic addition of the alkaline substrate. After 55 h of incubation, the polymeric glucan, xylan, and arabinan present in the lime-treated straw were hydrolyzed for 55%, 75%, and 80%, respectively. Lactic acid (40.7 g/l) indicated a fermentation efficiency of 81% and a chiral L(+)-lactic acid purity of 97.2%. In total, 711 g lactic acid was produced out of 2,706 g lime-treated straw, representing 43% of the overall theoretical maximum yield. Approximately half of the lactic acid produced was neutralized by fed-batch feeding of lime-treated straw, whereas the remaining half was neutralized during the batch phase with a Ca(OH)2 suspension. Of the lime added during the pretreatment of straw, 61% was used for the neutralization of lactic acid. This is the first demonstration of a process having a combined alkaline pretreatment of lignocellulosic biomass and pH control in fermentation resulting in a significant saving of lime consumption and avoiding the necessity to recycle lime.


Assuntos
Bacillus/metabolismo , Compostos de Cálcio/química , Hidróxido de Cálcio/química , Fermentação , Ácido Láctico/metabolismo , Óxidos/química , Triticum/metabolismo , Bacillus/enzimologia , Biodegradação Ambiental , Biomassa , Reatores Biológicos , Concentração de Íons de Hidrogênio , Hidrólise , Microbiologia Industrial , Ácido Láctico/química , Triticum/química , Resíduos/análise
4.
Appl Microbiol Biotechnol ; 72(5): 861-8, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16528511

RESUMO

Lignocellulosic biomass is considered nowadays to be an economically attractive carbohydrate feedstock for large-scale fermentation of bulk chemicals such as lactic acid. The filamentous fungus Rhizopus oryzae is able to grow in mineral medium with glucose as sole carbon source and to produce optically pure L(+)-lactic acid. Less is known about the conversion by R. oryzae of pentose sugars such as xylose, which is abundantly present in lignocellulosic hydrolysates. This paper describes the conversion of xylose in synthetic media into lactic acid by ten R. oryzae strains resulting in yields between 0.41 and 0.71 g g(-1). By-products were fungal biomass, xylitol, glycerol, ethanol and carbon dioxide. The growth of R. oryzae CBS 112.07 in media with initial xylose concentrations above 40 g l(-1) showed inhibition of substrate consumption and lactic acid production rates. In case of mixed substrates, diauxic growth was observed where consumption of glucose and xylose occurred subsequently. Sugar consumption rate and lactic acid production rate were significantly higher during glucose consumption phase compared to xylose consumption phase. Available xylose (10.3 g l(-1)) and glucose (19.2 g l(-1)) present in a mild-temperature alkaline treated wheat straw hydrolysate was converted subsequently by R. oryzae with rates of 2.2 g glucose l(-1) h(-1) and 0.5 g xylose l(-1) h(-1). This resulted mainly into the product lactic acid (6.8 g l(-1)) and ethanol (5.7 g l(-1)).


Assuntos
Ácido Láctico/metabolismo , Rhizopus/metabolismo , Xilose/metabolismo , Celulose/metabolismo , Fermentação/fisiologia , Glucose/metabolismo , Lignina/metabolismo , Caules de Planta/metabolismo , Rhizopus/classificação , Fatores de Tempo , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA