RESUMO
The application of artificial intelligence (AI) is often associated with the use of large amounts of data for the construction of AI models and algorithms. This data should ideally comply with the FAIR Data principles, i.e. being findable, accessible, interoperable and reusable. However, the handling of health data poses a particular challenge in this context. In this article, we highlight the challenges of the data usage for AI in medicine using the example of anaesthesia and intensive care medicine. We discuss the current situation but also the obstacles for a wider application of AI in medicine in Europe and give suggestions how to solve the different issues. The article covers different subjects like data protection, research data infrastructures and approval of medical products. Finally, this article shows how it can nevertheless be possible to establish a secure and at the same time effective handling of data for use in AI at the European level despite its unneglectable difficulties.
Assuntos
Algoritmos , Inteligência Artificial , Europa (Continente) , HumanosRESUMO
BACKGROUND: The increasing development of artificial intelligence (AI) systems in medicine driven by researchers and entrepreneurs goes along with enormous expectations for medical care advancement. AI might change the clinical practice of physicians from almost all medical disciplines and in most areas of health care. While expectations for AI in medicine are high, practical implementations of AI for clinical practice are still scarce in Germany. Moreover, physicians' requirements and expectations of AI in medicine and their opinion on the usage of anonymized patient data for clinical and biomedical research have not been investigated widely in German university hospitals. OBJECTIVE: This study aimed to evaluate physicians' requirements and expectations of AI in medicine and their opinion on the secondary usage of patient data for (bio)medical research (eg, for the development of machine learning algorithms) in university hospitals in Germany. METHODS: A web-based survey was conducted addressing physicians of all medical disciplines in 8 German university hospitals. Answers were given using Likert scales and general demographic responses. Physicians were asked to participate locally via email in the respective hospitals. RESULTS: The online survey was completed by 303 physicians (female: 121/303, 39.9%; male: 173/303, 57.1%; no response: 9/303, 3.0%) from a wide range of medical disciplines and work experience levels. Most respondents either had a positive (130/303, 42.9%) or a very positive attitude (82/303, 27.1%) towards AI in medicine. There was a significant association between the personal rating of AI in medicine and the self-reported technical affinity level (H4=48.3, P<.001). A vast majority of physicians expected the future of medicine to be a mix of human and artificial intelligence (273/303, 90.1%) but also requested a scientific evaluation before the routine implementation of AI-based systems (276/303, 91.1%). Physicians were most optimistic that AI applications would identify drug interactions (280/303, 92.4%) to improve patient care substantially but were quite reserved regarding AI-supported diagnosis of psychiatric diseases (62/303, 20.5%). Of the respondents, 82.5% (250/303) agreed that there should be open access to anonymized patient databases for medical and biomedical research. CONCLUSIONS: Physicians in stationary patient care in German university hospitals show a generally positive attitude towards using most AI applications in medicine. Along with this optimism comes several expectations and hopes that AI will assist physicians in clinical decision making. Especially in fields of medicine where huge amounts of data are processed (eg, imaging procedures in radiology and pathology) or data are collected continuously (eg, cardiology and intensive care medicine), physicians' expectations of AI to substantially improve future patient care are high. In the study, the greatest potential was seen in the application of AI for the identification of drug interactions, assumedly due to the rising complexity of drug administration to polymorbid, polypharmacy patients. However, for the practical usage of AI in health care, regulatory and organizational challenges still have to be mastered.
Assuntos
Médicos , Radiologia , Inteligência Artificial , Feminino , Hospitais Universitários , Humanos , Internet , Masculino , Motivação , Inquéritos e QuestionáriosRESUMO
BACKGROUND: The use of mobile devices in hospital care constantly increases. However, smartphones and tablets have not yet widely become official working equipment in medical care. Meanwhile, the parallel use of private and official devices in hospitals is common. Medical staff use smartphones and tablets in a growing number of ways. This mixture of devices and how they can be used is a challenge to persons in charge of defining strategies and rules for the usage of mobile devices in hospital care. OBJECTIVE: Therefore, we aimed to examine the status quo of physicians' mobile device usage and concrete requirements and their future expectations of how mobile devices can be used. METHODS: We performed a web-based survey among physicians in 8 German university hospitals from June to October 2019. The online survey was forwarded by hospital management personnel to physicians from all departments involved in patient care at the local sites. RESULTS: A total of 303 physicians from almost all medical fields and work experience levels completed the web-based survey. The majority regarded a tablet (211/303, 69.6%) and a smartphone (177/303, 58.4%) as the ideal devices for their operational area. In practice, physicians are still predominantly using desktop computers during their worktime (mean percentage of worktime spent on a desktop computer: 56.8%; smartphone: 12.8%; tablet: 3.6%). Today, physicians use mobile devices for basic tasks such as oral (171/303, 56.4%) and written (118/303, 38.9%) communication and to look up dosages, diagnoses, and guidelines (194/303, 64.0%). Respondents are also willing to use mobile devices for more advanced applications such as an early warning system (224/303, 73.9%) and mobile electronic health records (211/303, 69.6%). We found a significant association between the technical affinity and the preference of device in medical care (χs2=53.84, P<.001) showing that with increasing self-reported technical affinity, the preference for smartphones and tablets increases compared to desktop computers. CONCLUSIONS: Physicians in German university hospitals have a high technical affinity and positive attitude toward the widespread implementation of mobile devices in clinical care. They are willing to use official mobile devices in clinical practice for basic and advanced mobile health uses. Thus, the reason for the low usage is not a lack of willingness of the potential users. Challenges that hinder the wider adoption of mobile devices might be regulatory, financial and organizational issues, and missing interoperability standards of clinical information systems, but also a shortage of areas of application in which workflows are adapted for (small) mobile devices.
Assuntos
Computadores de Mão/normas , Internet/normas , Aplicativos Móveis/estatística & dados numéricos , Médicos/normas , Alemanha , Hospitais Universitários , Humanos , Inquéritos e QuestionáriosRESUMO
Objective: The attitudes about the usage of artificial intelligence in healthcare are controversial. Unlike the perception of healthcare professionals, the attitudes of patients and their companions have been of less interest so far. In this study, we aimed to investigate the perception of artificial intelligence in healthcare among this highly relevant group along with the influence of digital affinity and sociodemographic factors. Methods: We conducted a cross-sectional study using a paper-based questionnaire with patients and their companions at a German tertiary referral hospital from December 2019 to February 2020. The questionnaire consisted of three sections examining (a) the respondents' technical affinity, (b) their perception of different aspects of artificial intelligence in healthcare and (c) sociodemographic characteristics. Results: From a total of 452 participants, more than 90% already read or heard about artificial intelligence, but only 24% reported good or expert knowledge. Asked on their general perception, 53.18% of the respondents rated the use of artificial intelligence in medicine as positive or very positive, but only 4.77% negative or very negative. The respondents denied concerns about artificial intelligence, but strongly agreed that artificial intelligence must be controlled by a physician. Older patients, women, persons with lower education and technical affinity were more cautious on the healthcare-related artificial intelligence usage. Conclusions: German patients and their companions are open towards the usage of artificial intelligence in healthcare. Although showing only a mediocre knowledge about artificial intelligence, a majority rated artificial intelligence in healthcare as positive. Particularly, patients insist that a physician supervises the artificial intelligence and keeps ultimate responsibility for diagnosis and therapy.
RESUMO
INTRODUCTION: The acute respiratory distress syndrome (ARDS) is a highly relevant entity in critical care with mortality rates of 40%. Despite extensive scientific efforts, outcome-relevant therapeutic measures are still insufficiently practised at the bedside. Thus, there is a clear need to adhere to early diagnosis and sufficient therapy in ARDS, assuring lower mortality and multiple organ failure. METHODS AND ANALYSIS: In this quality improvement strategy (QIS), a decision support system as a mobile application (ASIC app), which uses available clinical real-time data, is implemented to support physicians in timely diagnosis and improvement of adherence to established guidelines in the treatment of ARDS. ASIC is conducted on 31 intensive care units (ICUs) at 8 German university hospitals. It is designed as a multicentre stepped-wedge cluster randomised QIS. ICUs are combined into 12 clusters which are randomised in 12 steps. After preparation (18 months) and a control phase of 8 months for all clusters, the first cluster enters a roll-in phase (3 months) that is followed by the actual QIS phase. The remaining clusters follow in month wise steps. The coprimary key performance indicators (KPIs) consist of the ARDS diagnostic rate and guideline adherence regarding lung-protective ventilation. Secondary KPIs include the prevalence of organ dysfunction within 28 days after diagnosis or ICU discharge, the treatment duration on ICU and the hospital mortality. Furthermore, the user acceptance and usability of new technologies in medicine are examined. To show improvements in healthcare of patients with ARDS, differences in primary and secondary KPIs between control phase and QIS will be tested. ETHICS AND DISSEMINATION: Ethical approval was obtained from the independent Ethics Committee (EC) at the RWTH Aachen Faculty of Medicine (local EC reference number: EK 102/19) and the respective data protection officer in March 2019. The results of the ASIC QIS will be presented at conferences and published in peer-reviewed journals. TRIAL REGISTRATION NUMBER: DRKS00014330.
Assuntos
Síndrome do Desconforto Respiratório , Cuidados Críticos , Humanos , Unidades de Terapia Intensiva , Estudos Multicêntricos como Assunto , Melhoria de Qualidade , Respiração Artificial , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapiaRESUMO
INTRODUCTION: This article is part of the Focus Theme of Methods of Information in Medicine on the German Medical Informatics Initiative. "Smart Medical Information Technology for Healthcare (SMITH)" is one of four consortia funded by the German Medical Informatics Initiative (MI-I) to create an alliance of universities, university hospitals, research institutions and IT companies. SMITH's goals are to establish Data Integration Centers (DICs) at each SMITH partner hospital and to implement use cases which demonstrate the usefulness of the approach. OBJECTIVES: To give insight into architectural design issues underlying SMITH data integration and to introduce the use cases to be implemented. GOVERNANCE AND POLICIES: SMITH implements a federated approach as well for its governance structure as for its information system architecture. SMITH has designed a generic concept for its data integration centers. They share identical services and functionalities to take best advantage of the interoperability architectures and of the data use and access process planned. The DICs provide access to the local hospitals' Electronic Medical Records (EMR). This is based on data trustee and privacy management services. DIC staff will curate and amend EMR data in the Health Data Storage. METHODOLOGY AND ARCHITECTURAL FRAMEWORK: To share medical and research data, SMITH's information system is based on communication and storage standards. We use the Reference Model of the Open Archival Information System and will consistently implement profiles of Integrating the Health Care Enterprise (IHE) and Health Level Seven (HL7) standards. Standard terminologies will be applied. The SMITH Market Place will be used for devising agreements on data access and distribution. 3LGM2 for enterprise architecture modeling supports a consistent development process.The DIC reference architecture determines the services, applications and the standardsbased communication links needed for efficiently supporting the ingesting, data nourishing, trustee, privacy management and data transfer tasks of the SMITH DICs. The reference architecture is adopted at the local sites. Data sharing services and the market place enable interoperability. USE CASES: The methodological use case "Phenotype Pipeline" (PheP) constructs algorithms for annotations and analyses of patient-related phenotypes according to classification rules or statistical models based on structured data. Unstructured textual data will be subject to natural language processing to permit integration into the phenotyping algorithms. The clinical use case "Algorithmic Surveillance of ICU Patients" (ASIC) focusses on patients in Intensive Care Units (ICU) with the acute respiratory distress syndrome (ARDS). A model-based decision-support system will give advice for mechanical ventilation. The clinical use case HELP develops a "hospital-wide electronic medical record-based computerized decision support system to improve outcomes of patients with blood-stream infections" (HELP). ASIC and HELP use the PheP. The clinical benefit of the use cases ASIC and HELP will be demonstrated in a change of care clinical trial based on a step wedge design. DISCUSSION: SMITH's strength is the modular, reusable IT architecture based on interoperability standards, the integration of the hospitals' information management departments and the public-private partnership. The project aims at sustainability beyond the first 4-year funding period.