Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Toxicol Environ Health A ; 84(11): 458-474, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33641630

RESUMO

Fused filament fabrication (FFF) 3D printers are increasingly used in industrial, academic, military, and residential sectors, yet their emissions and associated user exposure scenarios are not fully described. Characterization of potential user exposure and environmental releases requires robust investigation. During operation, common FFF 3D printers emit varying amounts of ultrafine particles (UFPs) depending upon feedstock material and operation procedures. Volatile organic compounds associated with these emissions exhibit distinct odors; however, the UFP portion is largely imperceptible by humans. This investigation presents straightforward computational modeling as well as experimental validation to provide actionable insights for the proactive design of lower exposure spaces where 3D printers may be used. Specifically, data suggest that forced clean airflows may create lower exposure spaces, and that computational modeling might be employed to predict these spaces with reasonable accuracy to assist with room design. The configuration and positioning of room air ventilation diffusers may be a key factor in identifying lower exposure spaces. A workflow of measuring emissions during a printing process in an ANSI/CAN/UL 2904 environmental chamber was used to provide data for computational fluid dynamics (CFD) modeling of a 6 m2 room. Measurements of the particle concentrations in a Class 1000 clean room of identical geometry were found to pass the Hanna test for agreement between model and experimental data, validating the findings.


Assuntos
Poluentes Atmosféricos/análise , Química Computacional , Exposição Ambiental/análise , Hidrodinâmica , Material Particulado/análise , Biologia Computacional , Humanos , Modelos Teóricos , Impressão Tridimensional
2.
Nano Lett ; 20(10): 7642-7647, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32986441

RESUMO

Shortages in the availability of personal protective face masks during the COVID-19 pandemic required many to fabricate masks and filter inserts from available materials. While the base filtration efficiency of a material is of primary importance when a perfect seal is possible, ideal fit is not likely to be achieved by the average person preparing to enter a public space or even a healthcare worker without fit-testing before each shift. Our findings suggest that parameters including permeability and pliability can play a strong role in the filtration efficiency of a mask fabricated with various filter media, and that the filtration efficiency of loosely fitting masks/respirators against ultrafine particulates can drop by more than 60% when worn compared to the ideal filtration efficiency of the base material. Further, a test method using SARS-CoV-2 virion-sized silica nanoaerosols is demonstrated to assess the filtration efficiency against nanoparticulates that follow air currents associated with mask leakage.


Assuntos
Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Filtração/instrumentação , Máscaras , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Dispositivos de Proteção Respiratória , Têxteis , Aerossóis , Microbiologia do Ar , Betacoronavirus/ultraestrutura , COVID-19 , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Fibra de Algodão , Filtração/estatística & dados numéricos , Humanos , Exposição por Inalação , Nanopartículas , Tamanho da Partícula , Permeabilidade , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2 , Dióxido de Silício
3.
Langmuir ; 31(27): 7673-83, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26114747

RESUMO

Cationic polyethylenimine conjugated gold nanoparticles (AuNP-PEI) are a widely studied vector for drug delivery and an effective probe for interrogating NP-cell interactions. However, an inconsistent body of literature currently exists regarding the reproducibility of physicochemical properties, colloidal stability, and efficacy for these species. To address this gap, we systematically examined the preparation, stability, and formation mechanism of PEI conjugates produced from citrate-capped AuNPs. We considered the dependence on relative molar mass, Mr, backbone conformation, and material source. The conjugation mechanism of Au-PEI was probed using attenuated total reflectance FTIR and X-ray photoelectron spectroscopy, revealing distinct fates for citrate when interacting with different PEI species. The differences in residual citrate, PEI properties, and sample preparation resulted in distinct products with differentiated stability. Overall, branched PEI (25 kDa) conjugates exhibited the greatest colloidal stability in all media tested. By contrast, linear PEI (25 kDa) induced agglomeration. Colloidal stability of the products was also observed to correlate with displaced citrate, which supports a glaring knowledge gap that has emerged regarding the role of this commonly used carboxylate species as a "place holder" for conjugation with ligands of broad functionalities. We observed an unexpected and previously unreported conversion of amine functional groups to quaternary ammonium species for 10 kDa branched conjugates. Results suggest that the AuNP surface catalyzes this conversion. The product is known to manifest distinct processes and uptake in biological systems compared to amines and may lead to unintentional toxicological consequences or decreased efficacy as delivery vectors. Overall, comprehensive physicochemical characterization (tandem spectroscopy methods combined with physical measurements) of the conjugation process provides a methodology for elucidating the contributing factors of colloidal stability and chemical functionality that likely influence the previously reported variations in conjugate properties and biological response models.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Modelos Biológicos , Polietilenoimina/química , Coloides/química , Tamanho da Partícula , Propriedades de Superfície
4.
Anal Chem ; 86(7): 3405-14, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24575780

RESUMO

The increasing application of engineered nanomaterials (ENMs) in consumer and medical products has motivated the development of single-particle inductively coupled plasma mass spectrometry (spICP-MS) for characterizing nanoparticles under realistic environmental exposure conditions. Recent studies have established a set of metrological criteria and evaluated the feasibility of spICP-MS for sizing or quantifying various highly commercialized ENMs. However, less is known about the performance of spICP-MS for detecting nanoparticles with sizes greater than 80 nm. This paper presents a systematic study on spICP-MS for accurate size measurement of gold nanoparticles from 10 to 200 nm. We show that dwell time contributes significantly to the quality of data, with the optimal dwell time that limits split particle events, particle coincidences and false positives being 10 ms. A simple approach to correct for split particle events is demonstrated. We show that transient features of single particle events can be temporally resolved on a conventional quadrupole ICP-MS system using a sufficiently short dwell time (0.1 ms). We propose an intensity-size diagram for estimating the linear dynamic size range and guiding the selection of ICP-MS operating conditions. The linear dynamic size range of the ICP-MS system under standard (highest) sensitivity conditions is 10 to 70 nm but can be further extended to 200 nm by operating in less sensitive modes. Finally, the ability of spICP-MS to characterize heterogeneous forms of metal containing nanoparticles is evaluated in mixtures containing both dissolved and poly disperse nanoparticulate Au.


Assuntos
Ouro/química , Nanopartículas Metálicas , Espectrometria de Massas , Tamanho da Partícula
5.
Langmuir ; 30(38): 11442-52, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25137213

RESUMO

Little is understood regarding the impact that molecular coatings have on nanoparticle dissolution kinetics and agglomerate formation in a dilute nanoparticle dispersion. Dissolution and agglomeration processes compete in removing isolated nanoparticles from the dispersion, making quantitative time-dependent measurements of the mechanisms of nanoparticle loss particularly challenging. In this article, we present in situ ultra-small-angle X-ray scattering (USAXS) results, simultaneously quantifying dissolution, agglomeration, and stability limits of silver nanoparticles (AgNPs) coated with bovine serum albumin (BSA) protein. When the BSA corona is disrupted, we find that the loss of silver from the nanoparticle core is well matched by a second-order kinetic rate reaction, arising from the oxidative dissolution of silver. Dissolution and agglomeration are quantified, and morphological transitions throughout the process are qualified. By probing the BSA-AgNP suspension around its stability limits, we provide insight into the destabilization mechanism by which individual particles rapidly dissolve as a whole rather than undergo slow dissolution from the aqueous interface inward, once the BSA layer is breached. Because USAXS rapidly measures over the entire nanometer to micrometer size range during the dissolution process, many insights are also gained into the stabilization of NPs by protein and its ability to protect the labile metal core from the solution environment by prohibiting the diffusion of reactive species. This approach can be extended to a wide variety of coating molecules and reactive metal nanoparticle systems to carefully survey their stability limits, revealing the likely mechanisms of coating breakdown and ensuing reactions.


Assuntos
Nanopartículas Metálicas/química , Soroalbumina Bovina/química , Prata/química , Animais , Bovinos , Tamanho da Partícula , Propriedades de Superfície
6.
Langmuir ; 30(13): 3883-93, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24625049

RESUMO

We report the development of a novel cationic dendron (TAG1-PCD) and a positively charged gold nanoparticle-dendron conjugate (PCD-AuNP). TAG1-PCD was designed by considering the reactivity, hydrophilicity, and cationic nature that is required to yield a stable gold conjugate in aqueous media. The PCD-AuNPs, nominally 10 nm in size, were synthesized by reduction of chloroauric acid in the presence of TAG1-PCD. The physicochemical properties of PCD-AuNPs were characterized by dynamic light scattering, transmission electron microscopy, UV-vis absorbance, and X-ray photoelectron spectroscopy for investigation of size distribution, shape uniformity, surface plasmon resonance bands, and Au-dendron bonding. Asymmetric-flow field flow fractionation was employed to confirm the in situ size, purity, and surface properties of the PCD-AuNPs. Additionally, the stability of PCD-AuNPs was systematically evaluated with respect to shelf life determination, stability in biological media and a wide range of pH values, chemical resistance against cyanide, redispersibility from lyophilized state, and stability at temperatures relevant to biological systems. Dose dependent cell viability was evaluated in vitro using the human lung epithelial cell line A549 and a monkey kidney Vero cell line. Observations from in vitro studies are discussed. Overall, the investigation confirmed the successful development of stable PCD-AuNPs with excellent stability in biologically relevant test media containing proteins and electrolytes, and with a shelf life exceeding 6 months. The excellent aqueous stability and apparent lack of toxicity for this conjugate enhances its potential use as a test material for investigating interactions between positively charged NPs and biocellular and biomolecular systems, or as a vehicle for drug delivery.


Assuntos
Dendrímeros/química , Ouro/química , Nanopartículas Metálicas/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cloretos/química , Chlorocebus aethiops , Cianetos/química , Dendrímeros/farmacologia , Portadores de Fármacos , Fracionamento por Campo e Fluxo , Compostos de Ouro/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Eletricidade Estática , Propriedades de Superfície , Temperatura , Células Vero
7.
Environ Sci Technol ; 48(8): 4226-46, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24617739

RESUMO

Novel physicochemistries of engineered nanomaterials (ENMs) offer considerable commercial potential for new products and processes, but also the possibility of unforeseen and negative consequences upon ENM release into the environment. Investigations of ENM ecotoxicity have revealed that the unique properties of ENMs and a lack of appropriate test methods can lead to results that are inaccurate or not reproducible. The occurrence of spurious results or misinterpretations of results from ENM toxicity tests that are unique to investigations of ENMs (as opposed to traditional toxicants) have been reported, but have not yet been systemically reviewed. Our objective in this manuscript is to highlight artifacts and misinterpretations that can occur at each step of ecotoxicity testing: procurement or synthesis of the ENMs and assessment of potential toxic impurities such as metals or endotoxins, ENM storage, dispersion of the ENMs in the test medium, direct interference with assay reagents and unacknowledged indirect effects such as nutrient depletion during the assay, and assessment of the ENM biodistribution in organisms. We recommend thorough characterization of initial ENMs including measurement of impurities, implementation of steps to minimize changes to the ENMs during storage, inclusion of a set of experimental controls (e.g., to assess impacts of nutrient depletion, ENM specific effects, impurities in ENM formulation, desorbed surface coatings, the dispersion process, and direct interference of ENM with toxicity assays), and use of orthogonal measurement methods when available to assess ENMs fate and distribution in organisms.


Assuntos
Artefatos , Ecotoxicologia/métodos , Nanoestruturas/toxicidade , Testes de Toxicidade/métodos , Humanos , Distribuição Tecidual
8.
Anal Bioanal Chem ; 405(25): 8197-206, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23900671

RESUMO

Recently, an atomic force microscopy (AFM)-based approach for quantifying the number of biological molecules conjugated to a nanoparticle surface at low number densities was reported. The number of target molecules conjugated to the analyte nanoparticle can be determined with single nanoparticle fidelity using antibody-mediated self-assembly to decorate the analyte nanoparticles with probe nanoparticles (i.e., quantitative immunostaining). This work refines the statistical models used to quantitatively interpret the observations when AFM is used to image the resulting structures. The refinements add terms to the previous statistical models to account for the physical sizes of the analyte nanoparticles, conjugated molecules, antibodies, and probe nanoparticles. Thus, a more physically realistic statistical computation can be implemented for a given sample of known qualitative composition, using the software scripts provided. Example AFM data sets, using horseradish peroxidase conjugated to gold nanoparticles, are presented to illustrate how to implement this method successfully.


Assuntos
Imuno-Histoquímica/métodos , Microscopia de Força Atômica/métodos , Nanopartículas/análise , Armoracia/enzimologia , Enzimas Imobilizadas/análise , Ouro/análise , Peroxidase do Rábano Silvestre/análise , Imunoglobulina G/análise , Modelos Estatísticos , Nanopartículas/ultraestrutura , Propriedades de Superfície
9.
Anal Bioanal Chem ; 405(4): 1191-202, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23151656

RESUMO

The application of asymmetric-flow field flow fractionation (A4F) for low aspect ratio gold nanorod (GNR) fractionation and characterization was comprehensively investigated. We report on two novel aspects of this application. The first addresses the analytical challenge involved in the fractionation of positively charged nanoparticles by A4F, due to the interaction that exists between the negatively charged native membrane and the analyte. We show that the mobile phase composition is a critical parameter for controlling fractionation and mitigating the membrane-analyte interaction. A mixture of ammonium nitrate and cetyl trimethyl ammonium bromide at different molar ratios enables separation of GNRs with high recovery. The second aspect is the demonstration of shape-based separation of GNRs in A4F normal mode elution (i.e., Brownian mode). We show that the elution of GNRs is due both to aspect ratio and a steric-entropic contribution for GNRs with the same diameter. This latter effect can be explained by their orientation vector inside the A4F channel. Our experimental results demonstrate the relevance of the theory described by Beckett and Giddings for non-spherical fractionation (Beckett and Giddings, J Colloid and Interface Sci 186(1):53-59, 1997). However, it is shown that this theory has its limit in the case of complex GNR mixtures, and that shape (i.e., aspect ratio) is the principal material parameter controlling elution of GNRs in A4F; the apparent translational diffusion coefficient of GNRs increases with aspect ratio. Finally, the performance of the methodology developed in this work is evaluated by the fractionation and characterization of individual components from a mixture of GNR aspect ratios.

10.
J Toxicol Environ Health A ; 76(11): 651-68, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23941635

RESUMO

Exposure to wet aerosols generated during use of spray products containing silver (Ag) has not been evaluated. The goal was to assess the potential for cardiopulmonary toxicity following an acute inhalation of wet silver colloid. Rats were exposed by inhalation to a low concentration (100 µg/m(3) ) using an undiluted commercial antimicrobial product (20 mg/L total silver; approximately 33 nm mean aerodynamic diameter [MAD]) or to a higher concentration (1000 µg/m(3)) using a suspension (200 mg/L total silver; approximately 39 nm MAD) synthesized to possess a similar size distribution of Ag nanoparticles for 5 h. Estimated lung burdens from deposition models were 0, 1.4, or 14 µg Ag/rat after exposure to control aerosol, low, and high doses, respectively. At 1 and 7 d postexposure, the following parameters were monitored: pulmonary inflammation, lung cell toxicity, alveolar air/blood barrier damage, alveolar macrophage activity, blood cell differentials, responsiveness of tail artery to vasoconstrictor or vasodilatory agents, and heart rate and blood pressure in response to isoproterenol or norepinephrine, respectively. Changes in pulmonary or cardiovascular parameters were absent or nonsignificant at 1 or 7 d postexposure with the exceptions of increased blood monocytes 1 d after high-dose Ag exposure and decreased dilation of tail artery after stimulation, as well as elevated heart rate in response to isoproterenol 1 d after low-dose Ag exposure, possibly due to bioavailable ionic Ag in the commercial product. In summary, short-term inhalation of nano-Ag did not produce apparent marked acute toxicity in this animal model.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Anti-Infecciosos/toxicidade , Sistema Cardiovascular/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Compostos de Prata/toxicidade , Lesão Pulmonar Aguda/metabolismo , Administração por Inalação , Aerossóis , Animais , Anti-Infecciosos/farmacocinética , Artérias/efeitos dos fármacos , Artérias/fisiopatologia , Cardiotônicos/farmacologia , Coloides , Hemodinâmica , Isoproterenol , Pulmão/metabolismo , Masculino , Norepinefrina , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Compostos de Prata/farmacocinética , Vasoconstritores
11.
Langmuir ; 28(6): 3248-58, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22242624

RESUMO

Gold nanomaterials (AuNMs) have distinctive electronic and optical properties, making them ideal candidates for biological, medical, and defense applications. Therefore, it is imperative to evaluate the potential biological impact of AuNMs before employing them in any application. This study investigates two AuNMs with different aspect ratios (AR) on mediation of biological responses in the human keratinocyte cell line (HaCaT) to model potential skin exposure to these AuNMs. The cellular responses were evaluated by cell viability, reactive oxygen species (ROS) generation, alteration in gene and protein expression, and inflammatory response. Gold nanospheres, nominally 20 nm in diameter and coated with mercaptopropane sulfonate (AuNS-MPS), formed agglomerates when dispersed in cell culture media, had a large fractal dimension (D(f) = 2.57 ± 0.4) (i.e., tightly bound and densely packed) and were found to be nontoxic even at the highest dose of 100 µg/mL. Highly uniform, 16.7 nm diameter, and 43.8 nm long polyethylene glycol-capped gold nanorods (AuNR-PEG) also formed agglomerates when dispersed into the cell culture media. However, the agglomerates had a smaller fractal dimension (D(f) = 1.28 ± 0.08) (i.e., loosely bound) and were found to be cytotoxic to the HaCaT cells, with a significant decrease in cell viability occurring at 25 µg/mL and higher. Moreover, AuNR-PEG caused significant ROS production and up-regulated several genes involved in cellular stress and toxicity. These results, combined with increased levels of inflammatory and apoptotic proteins, demonstrated that the AuNR-PEG induced apoptosis. Exposure to AuNS-MPS, however, did not show any of the detrimental effects observed from the AuNR-PEG. Therefore, we conclude that shape appears to play a key role in mediating the cellular response to AuNMs.


Assuntos
Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Nanopartículas Metálicas/efeitos adversos , Nanopartículas Metálicas/química , Nanoestruturas/efeitos adversos , Nanoestruturas/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ouro , Humanos , Queratinócitos/citologia , Espécies Reativas de Oxigênio/metabolismo
12.
Langmuir ; 27(6): 2464-77, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21341776

RESUMO

The adsorption and conformation of bovine serum albumin (BSA) on gold nanoparticles (AuNPs) were interrogated both qualitatively and quantitatively via complementary physicochemical characterization methods. Dynamic light scattering (DLS), asymmetric-flow field flow fractionation (AFFF), fluorescence spectrometry, and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy were combined to characterize BSA-AuNP conjugates under fluid conditions, while conjugates in the aerosol state were characterized by electrospray-differential mobility analysis (ES-DMA). The presence of unbound BSA molecules interferes with DLS analysis of the conjugates, particularly as the AuNP size decreases (i.e., below 30 nm in diameter). Under conditions where the γ value is high, where γ is defined as the ratio of scattering intensity by AuNPs to the scattering intensity by unbound BSA, DLS size results are consistent with results obtained after fractionation by AFFF. Additionally, the AuNP hydrodynamic size exhibits a greater proportional increase due to BSA conjugation at pH values below 2.5 compared with less acidic pH values (3.4-7.3), corresponding with the reversibly denatured (E or F form) conformation of BSA below pH 2.5. Over the pH range from 3.4 to 7.3, the hydrodynamic size of the conjugate is nearly constant, suggesting conformational stability over this range. Because of the difference in the measurement environment, a larger increase of AuNP size is observed following BSA conjugation when measured in the wet state (i.e., by DLS and AFFF) compared to the dry state (by ES-DMA). Molecular surface density for BSA is estimated based on ES-DMA and fluorescence measurements. Results from the two techniques are consistent and similar, but slightly higher for ES-DMA, with an average adsorbate density of 0.015 nm(-2). Moreover, from the change of particle size, we determine the extent of adsorption for BSA on AuNPs using DLS and ES-DMA at 21 °C, which show that increasing the concentration of BSA increases the measured change in AuNP size. Using ES-DMA, we observe that the BSA surface density reaches 90% of saturation at a solution phase concentration between 10 and 30 µmol/L, which is roughly consistent with fluorescence and ATR-FTIR results. The equilibrium binding constant for BSA on AuNPs is calculated by applying the Langmuir equation, with resulting values ranging from 0.51 × 10(6) to 1.65 × 10(6) L/mol, suggesting a strong affinity due to bonding between the single free exterior thiol on N-form BSA (associated with a cysteine residue) and the AuNP surface. Moreover, the adsorption interaction induces a conformational change in BSA secondary structure, resulting in less α-helix content and more open structures (ß-sheet, random, or expanded).


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Soroalbumina Bovina/química , Adsorção , Animais , Bovinos , Fracionamento por Campo e Fluxo , Luz , Tamanho da Partícula , Conformação Proteica , Espalhamento de Radiação , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
13.
Environ Sci Technol ; 45(9): 3895-901, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21456573

RESUMO

The formation of silver nanoparticles (AgNPs) via reduction of silver ions (Ag(+)) in the presence of humic acids (HAs) under various environmentally relevant conditions is described. HAs tested originated from the Suwannee River (SUW), and included samples of three sedimentary HAs (SHAs), and five soils obtained across the state of Florida. The time required to form AgNPs varied depending upon the type and concentration of HA, as well as temperature. SUW and all three SHAs reduced Ag(+) at 22 °C. However, none of the soil HAs formed absorbance-detectable AgNPs at room temperature when allowed to react for a period of 25 days, at which time experiments were halted. The appearance of the characteristic surface plasmon resonance (SPR) of AgNPs was observed by ultraviolet-visible spectroscopy in as few as 2-4 days at 22 °C for SHAs and SUW. An elevated temperature of 90 °C resulted in the accelerated appearance of the SPR within 90 min for SUW and all SHAs. The formation of AgNPs at 90 °C was usually complete within 3 h. Transmission electron microscopy and atomic force microscopy images showed that the AgNPs formed were typically spherical and had a broad size distribution. Dynamic light scattering also revealed polydisperse particle size distributions. HAs appeared to colloidally stabilize AgNPs based on lack of any significant change in the spectral characteristics over a period of two months. The results suggest the potential for direct formation of AgNPs under environmental conditions from Ag(+) sources, implying that not all AgNPs observed in natural waters today may be of anthropogenic origin.


Assuntos
Substâncias Húmicas/análise , Nanopartículas Metálicas/química , Prata/química , Nanopartículas Metálicas/ultraestrutura , Oxirredução
14.
Anal Bioanal Chem ; 401(6): 1993-2002, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21808990

RESUMO

Distinguishing the toxic effects of nanoparticles (NPs) themselves from the well-studied toxic effects of their ions is a critical but challenging measurement for nanotoxicity studies and regulation. This measurement is especially difficult for silver NPs (AgNPs) because in many relevant biological and environmental solutions, dissolved silver forms AgCl NPs or microparticles. Simulations predict that solid AgCl particles form at silver concentrations greater than 0.18 and 0.58 µg/mL in cell culture media and moderately hard reconstituted water (MHRW), respectively. The AgCl NPs are usually not easily separable from AgNPs. Therefore, common existing total silver techniques applied to measure AgNP dissolution, such as inductively coupled plasma mass spectrometry (ICP-MS) or atomic absorption, cannot accurately measure the amount of silver remaining in AgNP form, as they cannot distinguish Ag oxidation states. In this work, we introduce a simple localized surface plasmon resonance (LSPR) UV-visible absorbance measurement as a technique to measure the amount of silver remaining in AgNP form for AgNPs with constant agglomeration states. Unlike other existing methods, this absorbance method can be used to measure the amount of silver remaining in AgNP form even in biological and environmental solutions containing chloride because AgCl NPs do not have an associated LSPR absorbance. In addition, no separation step is required to measure the dissolution of the AgNPs. After using ICP-MS to show that the area under the absorbance curve is an accurate measure of silver in AgNP state for unagglomerating AgNPs in non-chloride-containing media, the absorbance is used to measure dissolution rates of AgNPs with different polymer coatings in biological and environmental solutions. We find that the dissolution rate decreases at high AgNP concentrations, 5 kDa polyethylene glycol thiol coatings increase the dissolution rate, and the rate is much higher in cell culture media than in MHRW.


Assuntos
Nanopartículas Metálicas/análise , Prata/análise , Ressonância de Plasmônio de Superfície/métodos , Animais , Cloretos/química , Monitoramento Ambiental/métodos , Espectrometria de Massas/métodos , Solubilidade , Espectrofotometria Ultravioleta/métodos
15.
Microsc Microanal ; 17(2): 206-14, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21366936

RESUMO

Quantification of very low density molecular coatings on large (60 nm) gold nanoparticles (AuNPs) is demonstrated via the use of antibody-mediated self-limiting self-assembly of small and large AuNPs into raspberry-like structures subsequently imaged by atomic force microscopy (AFM). AFM imaging is proposed as an automated, lower-cost, higher-throughput alternative to immunostaining and imaging by transmission electron microscopy. Synthesis of large AuNPs, containing one of three ligand molecules in one of three stoichiometries (1, 2, or 10 ligands per AuNP), and small probe AuNPs with one of three antibody molecules in a one antibody per AuNP ratio, enabled a range of predicted self-limiting self-assembled structures. A model predicting the probability of observing a given small to large AuNP ratio based on a topography measurement such as AFM is described, in which random orientational deposition is assumed and which accounts for the stochastic synthesis method of the library AuNPs with varied ligand ratios. Experimental data were found to agree very well with the predictive models when using an established AFM sample preparation method that avoids drying-induced aggregation.


Assuntos
Anticorpos/química , Nanopartículas Metálicas/química , Microscopia de Força Atômica/métodos , Ouro/química , Imunoglobulina G/química , Propriedades de Superfície
16.
J Environ Monit ; 13(5): 1212-26, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21416095

RESUMO

The reported size distribution of silver nanoparticles (AgNPs) is strongly affected by the underlying measurement method, agglomeration state, and dispersion conditions. A selection of AgNP materials with vendor-reported diameters ranging from 1 nm to 100 nm, various size distributions, and biocompatible capping agents including citrate, starch and polyvinylpyrrolidone were studied. AgNPs were diluted with either deionized water, moderately hard reconstituted water, or moderately hard reconstituted water containing natural organic matter. Rigorous physico-chemical characterization by consensus methods and protocols where available enables an understanding of how the underlying measurement method impacts the reported size measurements, which in turn provides a more complete understanding of the state (size, size distribution, agglomeration, etc.) of the AgNPs with respect to the dispersion conditions. An approach to developing routine screening is also presented.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Ambientais/química , Nanopartículas Metálicas/química , Prata/química , Adsorção , Poluentes Ambientais/análise , Nanopartículas Metálicas/análise , Tamanho da Partícula , Prata/análise , Meio Selvagem
17.
Langmuir ; 26(12): 10325-33, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20465235

RESUMO

Competitive adsorption kinetics between thiolated polyethylene glycol (SH-PEG) and mercaptopropionic acid (MPA) on gold nanoparticles (Au-NPs) were studied using a prototype physical characterization approach that combines dynamic light scattering (DLS) and electrospray differential mobility analysis (ES-DMA). The change in hydrodynamic particle size (intensity average) due to the formation of SH-PEG coatings on Au-NPs was measured by DLS in both two-component (Au-NP + MPA or Au-NP + SH-PEG) and three-component (Au-NP +MPA + SH-PEG) systems. ES-DMA was employed to quantify the surface coverage of SH-PEG and establish a correlation between surface coverage and the change in particle size measured by DLS. A change in the equilibrium binding constant for SH-PEG on Au-NPs at various concentrations of SH-PEG and MPA showed that the presence of MPA reduced the binding affinity of SH-PEG to the Au-NP surface. Kinetic studies showed that SH-PEG was desorbed from the Au-NP surface following a second-order desorption model after subsequently introducing MPA. The desorption rate constant of SH-PEG from the Au-NP surface by MPA displacement was strongly affected by the concentration of MPA and the excess SH-PEG in solution.


Assuntos
Nanopartículas Metálicas/química , Polietilenoglicóis/química , Propionatos/química , Adsorção , Ouro , Cinética , Métodos , Compostos de Sulfidrila/química
18.
J Am Chem Soc ; 130(3): 887-91, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18092777

RESUMO

Capacitances of five types of viruses, adenovirus type 5 (AV5), herpes simplex virus type 1 (HSV1), simian virus 40 (SV40), vaccinia (MVA), and cowpea mosaic virus (CPMV), were compared by AC capacitance scanning probe microscopy. This technique, using a Pt-coated AFM tip as an electrode to probe capacitance of materials between the tip and a bottom electrode, has been applied to study surface structures of semiconductors and polymers with nanometer spatial resolution; however, biological samples at the nanoscale have not been explored by this technique yet. Because most biological cells are poor conductors, this approach to probe electric properties of cells by capacitance is logical. This scanning probe technique showed that each virus has distinguishable and characteristic capacitance. A series of control experiments were carried out using mutant viruses to validate the origin of the characteristic capacitance responses for different viruses. A mutation on the capsid in HSV1 with green fluorescence proteins increased capacitance from 9 x 10(-6) to 1 x 10(-5) F/cm2 at the frequency of 10(4) Hz. Herpes simplex virus type 2 (HSV2) decreased capacitance when its envelope and glycoproteins were chemically extracted. These control experiments indicate that dielectric properties of capsid proteins and envelope glycoproteins significantly influence overall dielectric constants of viruses. Because those capsid proteins and glycoproteins are characteristic of the virus strain, this technique could be applied to detect and identify viruses at the single viron level using their distinct capacitance spectra as fingerprints without labeling.


Assuntos
Capacitância Elétrica , Microscopia de Força Atômica/métodos , Microscopia de Varredura por Sonda/métodos , Vírus/química , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas de Fluorescência Verde/química , Microeletrodos , Mutação , Platina/química , Vírus/genética
19.
Soft Matter ; 4(4): 833-839, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-30687407

RESUMO

Robust trace-level detection of viruses is crucial to meet urgent needs in fighting the spread of disease or detecting bioterrorism events. We report a new method for rapid and highly sensitive detection of viruses utilizing fluorescent antibody nanotubes. When viral pathogens were mixed with these antibody nanotubes, the nanotubes rapidly aggregated around the viruses to form a networking structure. Trace quantities of viruses such as herpes simplex virus type 2, adenovirus, vaccinia and influenza type B were detected on attomolar order by changes in fluorescence and light scattering intensities associated with aggregation of dye-loaded antibody nanotubes around viruses. High specificity of each antibody nanotube toward its targeted virus was demonstrated by quantifying concentrations of two different viruses in mixtures. This antibody nanotube assay detects targeted pathogens within 30 minutes after incubation with antibody nanotubes. This antibody nanotube assay could fill a pressing need to detect and quantify viruses both rapidly and sensitively.

20.
Small ; 3(11): 1957-63, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17963285

RESUMO

Submonolayer coatings of noble-metal nanoparticle liquids (NPLs) are shown to provide replenishable surfaces with robust asperities and metallic conductivity that extends the durability of electrical relays by 10 to 100 times (depending on the current driven through the contact) as compared to alternative approaches. NPLs are single-component materials consisting of a metal nanoparticle core (5-20 nm Au or Pt nanoparticles) surrounded by a covalently tethered ionic-liquid corona of 1.5 to 2 nm. Common relay failure modes, such as stiction, surface distortion, and contact shorting, are suppressed with the addition of a submonolayer of NPLs to the contact surfaces. This distribution of NPLs results in a force profile for a contact-retraction cycle that is distinct from bare Au contacts and thicker, multilayer coatings of NPLs. Postmortem examination reveals a substantial decrease in topological change of the electrode surface relative to bare contacts, as well as an indication of lateral migration of the nanoparticles from the periphery towards the contact. A general extension of this concept to dynamic physical interfaces experiencing impact, sliding, or rolling affords alternatives to increase reliability and reduced losses for transmittance of electrical and mechanical energy.


Assuntos
Cristalização/métodos , Eletrônica/instrumentação , Transferência de Energia , Ouro/química , Microeletrodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA