Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 495(7442): 467-73, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23455423

RESUMO

Algorithms designed to identify canonical yeast prions predict that around 250 human proteins, including several RNA-binding proteins associated with neurodegenerative disease, harbour a distinctive prion-like domain (PrLD) enriched in uncharged polar amino acids and glycine. PrLDs in RNA-binding proteins are essential for the assembly of ribonucleoprotein granules. However, the interplay between human PrLD function and disease is not understood. Here we define pathogenic mutations in PrLDs of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1 in families with inherited degeneration affecting muscle, brain, motor neuron and bone, and in one case of familial amyotrophic lateral sclerosis. Wild-type hnRNPA2 (the most abundant isoform of hnRNPA2B1) and hnRNPA1 show an intrinsic tendency to assemble into self-seeding fibrils, which is exacerbated by the disease mutations. Indeed, the pathogenic mutations strengthen a 'steric zipper' motif in the PrLD, which accelerates the formation of self-seeding fibrils that cross-seed polymerization of wild-type hnRNP. Notably, the disease mutations promote excess incorporation of hnRNPA2 and hnRNPA1 into stress granules and drive the formation of cytoplasmic inclusions in animal models that recapitulate the human pathology. Thus, dysregulated polymerization caused by a potent mutant steric zipper motif in a PrLD can initiate degenerative disease. Related proteins with PrLDs should therefore be considered candidates for initiating and perhaps propagating proteinopathies of muscle, brain, motor neuron and bone.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Proteínas Mutantes/genética , Mutação/genética , Miosite de Corpos de Inclusão/genética , Osteíte Deformante/genética , Príons/química , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/metabolismo , Animais , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Masculino , Camundongos , Dados de Sequência Molecular , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Miosite de Corpos de Inclusão/metabolismo , Miosite de Corpos de Inclusão/patologia , Osteíte Deformante/metabolismo , Osteíte Deformante/patologia , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Príons/genética , Príons/metabolismo , Estrutura Terciária de Proteína/genética , RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-27040186

RESUMO

Molting in decapod crustaceans is controlled by molt-inhibiting hormone (MIH), an eyestalk neuropeptide that suppresses production of ecdysteroids by a pair of molting glands (Y-organs or YOs). Eyestalk ablation (ESA) activates the YOs, which hypertrophy and increase ecdysteroid secretion. At mid premolt, which occurs 7-14days post-ESA, the YO transitions to the committed state; hemolymph ecdysteroid titers increase further and the animal reaches ecdysis ~3weeks post-ESA. Two conserved signaling pathways, mechanistic target of rapamycin (mTOR) and transforming growth factor-ß (TGF-ß), are expressed in the Gecarcinus lateralis YO. Rapamycin, an mTOR antagonist, inhibits YO ecdysteroidogenesis in vitro. In this study, rapamycin lowered hemolymph ecdysteroid titer in ESA G. lateralis in vivo; levels were significantly lower than in control animals at all intervals (1-14days post-ESA). Injection of SB431542, an activin TGF-ß receptor antagonist, lowered hemolymph ecdysteroid titers 7 and 14days post-ESA, but had no effect on ecdysteroid titers at 1 and 3days post-ESA. mRNA levels of mTOR signaling genes Gl-mTOR, Gl-Akt, and Gl-S6k were increased by 3days post-ESA; the increases in Gl-mTOR and Gl-Akt mRNA levels were blocked by SB431542. Gl-elongation factor 2 and Gl-Rheb mRNA levels were not affected by ESA, but SB431542 lowered mRNA levels at Days 3 and 7 post-ESA. The mRNA level of an activin TGF-ß peptide, Gl-myostatin-like factor (Mstn), increased 5.5-fold from 0 to 3days post-ESA, followed by a 50-fold decrease from 3 to 7days post-ESA. These data suggest that (1) YO activation involves an up regulation of the mTOR signaling pathway; (2) mTOR is required for YO commitment; and (3) a Mstn-like factor mediates the transition of the YO from the activated to the committed state.


Assuntos
Braquiúros/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Benzamidas/farmacologia , Braquiúros/anatomia & histologia , Braquiúros/efeitos dos fármacos , Dioxóis/farmacologia , Ecdisteroides/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hemolinfa/efeitos dos fármacos , Hemolinfa/metabolismo , Muda/fisiologia , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética
3.
J Exp Biol ; 217(Pt 5): 796-808, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24198255

RESUMO

In decapod crustaceans, regulation of molting is controlled by the X-organ/sinus gland complex in the eyestalks. The complex secretes molt-inhibiting hormone (MIH), which suppresses production of ecdysteroids by the Y-organ (YO). MIH signaling involves nitric oxide and cGMP in the YO, which expresses nitric oxide synthase (NOS) and NO-sensitive guanylyl cyclase (GC-I). Molting can generally be induced by eyestalk ablation (ESA), which removes the primary source of MIH, or by multiple leg autotomy (MLA). In our work on Carcinus maenas, however, ESA has limited effects on hemolymph ecdysteroid titers and animals remain in intermolt at 7 days post-ESA, suggesting that adults are refractory to molt induction techniques. Consequently, the effects of ESA and MLA on molting and YO gene expression in C. maenas green and red color morphotypes were determined at intermediate (16 and 24 days) and long-term (~90 days) intervals. In intermediate-interval experiments, ESA of intermolt animals caused transient twofold to fourfold increases in hemolymph ecdysteroid titers during the first 2 weeks. In intermolt animals, long-term ESA increased hemolymph ecdysteroid titers fourfold to fivefold by 28 days post treatment, but there was no late premolt peak (>400 pg µl(-1)) characteristic of late premolt animals and animals did not molt by 90 days post-ESA. There was no effect of ESA or MLA on the expression of Cm-elongation factor 2 (EF2), Cm-NOS, the beta subunit of GC-I (Cm-GC-Iß), a membrane receptor GC (Cm-GC-II) and a soluble NO-insensitive GC (Cm-GC-III) in green morphs. Red morphs were affected by prolonged ESA and MLA treatments, as indicated by large decreases in Cm-EF2, Cm-GC-II and Cm-GC-III mRNA levels. ESA accelerated the transition of green morphs to the red phenotype in intermolt animals. ESA delayed molting in premolt green morphs, whereas intact and MLA animals molted by 30 days post treatment. There were significant effects on YO gene expression in intact animals: Cm-GC-Iß mRNA increased during premolt and Cm-GC-III mRNA decreased during premolt and increased during postmolt. Cm-MIH transcripts were detected in eyestalk ganglia, the brain and the thoracic ganglion from green intermolt animals, suggesing that MIH in the brain and thoracic ganglion prevents molt induction in green ESA animals.


Assuntos
Proteínas de Artrópodes/genética , Braquiúros/fisiologia , Ecdisteroides/sangue , Regulação da Expressão Gênica , Muda , Transdução de Sinais , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/metabolismo , Braquiúros/genética , Braquiúros/crescimento & desenvolvimento , California , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Hemolinfa/metabolismo , Espécies Introduzidas , Masculino , Dados de Sequência Molecular , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Pigmentação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
4.
Artigo em Inglês | MEDLINE | ID: mdl-24269559

RESUMO

Mechanistic target of rapamycin (mTOR) controls global translation of mRNA into protein by phosphorylating p70 S6 kinase (S6K) and eIF4E-binding protein-1. Akt and Rheb, a GTP-binding protein, regulate mTOR protein kinase activity. Molting in crustaceans is regulated by ecdysteroids synthesized by a pair of molting glands, or Y-organs (YOs), located in the cephalothorax. During premolt, the YOs hypertrophy and increase production of ecdysteroids. Rapamycin (1µM) inhibited ecdysteroid secretion in Carcinus maenas and Gecarcinus lateralis YOs in vitro, indicating that ecdysteroidogenesis requires mTOR-dependent protein synthesis. The effects of molting on the expression of four key mTOR signaling genes (mTOR, Akt, Rheb, and S6K) in the YO was investigated. Partial cDNAs encoding green crab (C. maenas) mTOR (4031bp), Akt (855bp), and S6K (918bp) were obtained from expressed sequence tags. Identity/similarity of the deduced amino acid sequence of the C. maenas cDNAs to human orthologs were 72%/81% for Cm-mTOR, 58%/73% for Cm-Akt, and 77%/88% for Cm-S6K. mTOR, Akt, S6K, and elongation factor 2 (EF2) in C. maenas and blackback land crab (G. lateralis) were expressed in all tissues examined. The two species differed in the effects of molting on gene expression in the YO. In G. lateralis, Gl-mTOR, Gl-Akt, and Gl-EF2 mRNA levels were increased during premolt. By contrast, molting had no effect on the expression of Cm-mTOR, Cm-Akt, Cm-S6K, Cm-Rheb, and Cm-EF2. These data suggest that YO activation during premolt involves up regulation of mTOR signaling genes in G. lateralis, but is not required in C. maenas.


Assuntos
Proteínas de Artrópodes/genética , Braquiúros/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Serina-Treonina Quinases TOR/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Braquiúros/crescimento & desenvolvimento , Braquiúros/metabolismo , Clonagem Molecular , Ecdisteroides/sangue , Ecdisteroides/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Dados de Sequência Molecular , Muda , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Especificidade de Órgãos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Homologia de Sequência de Aminoácidos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/biossíntese , Técnicas de Cultura de Tecidos
5.
J Exp Biol ; 215(Pt 4): 590-604, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22279066

RESUMO

Molt-induced claw muscle atrophy in decapod crustaceans facilitates exuviation and is coordinated by ecdysteroid hormones. There is a 4-fold reduction in mass accompanied by remodeling of the contractile apparatus, which is associated with an 11-fold increase in myofibrillar protein synthesis by the end of the premolt period. Loss of a walking limb or claw causes a loss of mass in the associated thoracic musculature; this unweighting atrophy occurs in intermolt and is ecdysteroid independent. Myostatin (Mstn) is a negative regulator of muscle growth in mammals; it suppresses protein synthesis, in part, by inhibiting the insulin/metazoan target of rapamycin (mTOR) signaling pathway. Signaling via mTOR activates translation by phosphorylating ribosomal S6 kinase (s6k) and 4E-binding protein 1. Rheb (Ras homolog enriched in brain), a GTP-binding protein, is a key activator of mTOR and is inhibited by Rheb-GTPase-activating protein (GAP). Akt protein kinase inactivates Rheb-GAP, thus slowing Rheb-GTPase activity and maintaining mTOR in the active state. We hypothesized that the large increase in global protein synthesis in claw muscle was due to regulation of mTOR activity by ecdysteroids, caused either directly or indirectly via Mstn. In the blackback land crab, Gecarcinus lateralis, a Mstn-like gene (Gl-Mstn) is downregulated as much as 17-fold in claw muscle during premolt and upregulated 3-fold in unweighted thoracic muscle during intermolt. Gl-Mstn expression in claw muscle is negatively correlated with hemolymph ecdysteroid level. Full-length cDNAs encoding Rheb orthologs from three crustacean species (G. lateralis, Carcinus maenas and Homarus americanus), as well as partial cDNAs encoding Akt (Gl-Akt), mTOR (Gl-mTOR) and s6k (Gl-s6k) from G. lateralis, were cloned. The effects of molting on insulin/mTOR signaling components were quantified in claw closer, weighted thoracic and unweighted thoracic muscles using quantitative polymerase chain reaction. Gl-Rheb mRNA levels increased 3.4-fold and 3.9-fold during premolt in claw muscles from animals induced to molt by eyestalk ablation (ESA) and multiple leg autotomy (MLA), respectively, and mRNA levels were positively correlated with hemolymph ecdysteroids. There was little or no effect of molting on Gl-Rheb expression in weighted thoracic muscle and no correlation of Gl-Rheb mRNA with ecdysteroid titer. There were significant changes in Gl-Akt, Gl-mTOR and Gl-s6k expression with molt stage. These changes were transient and were not correlated with hemolymph ecdysteroids. The two muscles differed in terms of the relationship between Gl-Rheb and Gl-Mstn expression. In thoracic muscle, Gl-Rheb mRNA was positively correlated with Gl-Mstn mRNA in both ESA and MLA animals. By contrast, Gl-Rheb mRNA in claw muscle was negatively correlated with Gl-Mstn mRNA in ESA animals, and no correlation was observed in MLA animals. Unweighting increased Gl-Rheb expression in thoracic muscle at all molt stages; the greatest difference (2.2-fold) was observed in intermolt animals. There was also a 1.3-fold increase in Gl-s6k mRNA level in unweighted thoracic muscle. These data indicate that the mTOR pathway is upregulated in atrophic muscles. Gl-Rheb, in particular, appears to play a role in the molt-induced increase in protein synthesis in the claw muscle.


Assuntos
Braquiúros/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sequência de Aminoácidos , Animais , Braquiúros/enzimologia , Braquiúros/genética , Clonagem Molecular , Ecdisteroides/metabolismo , Proteínas de Ligação ao GTP/biossíntese , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica , Masculino , Dados de Sequência Molecular , Muda/fisiologia , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Miostatina/genética , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Alinhamento de Sequência , Frutos do Mar , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Transcrição Gênica
6.
Microbiol Resour Announc ; 11(2): e0120621, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35084223

RESUMO

The hot springs bacterium Litorilinea aerophila PRI-4131T (= ATCC BAA-2444T) was found in Isafjardardjup, in northwest Iceland. In this paper, we present a draft genome sequence for the type strain, with a total predicted genome length of 6,043,010 bp, 4,608 protein-coding sequences, 54 RNAs, 9 CRISPR arrays, and a G+C content of 64.61%.

7.
Microbiol Resour Announc ; 11(8): e0054822, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35862911

RESUMO

Xanthobacter aminoxidans is a Gram-negative pleomorphic and diazotrophic Knallgas bacillus that undergoes asymmetric budding of V-shaped branched cells during cell division. Like other Xanthobacter spp., cells are yellow from production of zeaxanthine dirhamnoside. We sequenced strain 14aT (= ATCC BAA-299T) and report a genome size of 5,829,486 bp with a G+C content of 67.9%.

8.
Microbiol Resour Announc ; 11(4): e0002022, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35377176

RESUMO

The glycopeptide antibiotic-producing soil actinobacterium Kibdelosporangium philippinense A80407 (=ATCC 49844) was sequenced using Illumina and Nanopore sequencing methodologies, and a hybrid genome assembly was generated for this type strain, with a total predicted genome length of 12,054,556 bp, 10,953 protein-coding sequences, 79 RNAs, 298 pseudogenes, and a G+C content of 65.13%.

9.
Microbiol Resour Announc ; 10(48): e0105421, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854732

RESUMO

Ureibacillus terrenus TH9AT (=ATCC BAA-384T) was isolated from uncultivated soil in Italy in 1995. We present a draft genome sequence for the type strain, with a predicted genome length of 2,936,851 bp, containing 2,766 protein-coding genes, 82 RNA genes, and 5 CRISPR arrays, with a G+C content of 42.5%.

10.
Microbiol Resour Announc ; 10(45): e0098621, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34761957

RESUMO

We characterized the complete genome sequence of actinobacteriophage Yavru (Siphoviridae), a cluster FE bacteriophage infecting Arthrobacter globiformis NRRL B-2979; it was 89.5% identical to cluster FE phage Whytu, with a capsid width of 50 nm and a tail length of 90 nm. The genome was 15,193 bp in length, with 23 predicted protein-coding genes.

11.
Artigo em Inglês | MEDLINE | ID: mdl-20696264

RESUMO

A cDNA encoding a myostatin (Mstn)-like gene from an astacuran crustacean, Homarus americanus, was cloned and characterized. Mstn inhibits skeletal muscle growth in vertebrates and may play a role in crustacean muscle as a suppressor of protein synthesis. Sequence analysis and three-dimensional modeling of the Ha-Mstn protein predicted a high degree of conservation with vertebrate and other invertebrate myostatins. Qualitative polymerase chain reaction (PCR) demonstrated ubiquitous expression of transcript in all tissues, including skeletal muscles. Quantitative PCR analysis was used to determine the effects of natural molting and eyestalk ablation (ESA) on Ha-Mstn expression in the cutter claw (CT) and crusher claw (CR) closer muscles and deep abdominal (DA) muscle. In intermolt lobsters, the Ha-Mstn mRNA level in the DA muscle was significantly lower than the mRNA levels in the CT and CR muscles. Spontaneous molting decreased Ha-Mstn mRNA during premolt, with the CR muscle, which is composed of slow-twitch (S1) fibers, responding preferentially (82% decrease) to the atrophic signal compared to fast fibers in CT (51% decrease) and DA (69% decrease) muscles. However, acute increases in circulating ecdysteroids caused by ESA had no effect on Ha-Mstn mRNA levels in the three muscles. These data indicate that the transcription of Ha-Mstn is differentially regulated during the natural molt cycle and it is an important regulator of protein turnover in molt-induced claw muscle atrophy.


Assuntos
Regulação da Expressão Gênica , Muda/genética , Músculo Esquelético/metabolismo , Miostatina/genética , Nephropidae/genética , Regiões 3' não Traduzidas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Miostatina/química , Miostatina/metabolismo , Fases de Leitura Aberta/genética , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
12.
Microbiol Resour Announc ; 9(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919151

RESUMO

Bacillus thuringiensis is an agriculturally significant bacterium and common biological pesticide. B. thuringiensis strain MW was isolated from a freshwater stream in Mont Vernon, NH, and sequenced. A draft genome assembly of 5,935,630 bp with a G+C content of 34.86% and an N 50 value of 1,154,949 bp was generated.

13.
Microbiol Resour Announc ; 8(50)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831617

RESUMO

Dermacoccus nishinomiyaensis is a common bacterial resident of the human skin microbiome, among other environments. D. nishinomiyaensis strain TSA37 was isolated from the ash pan of a residential wood pellet stove. A genome assembly of 3,130,592 bp was generated, with an N 50 value of 197,547 bp and a calculated G+C content of 69.01%.

14.
Microbiol Resour Announc ; 8(29)2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31320435

RESUMO

Lentibacillus salicampi SF-20T (=ATCC BAA-719T) was first isolated from a Yellow Sea salt field in Korea in 2002. Here, we report that the L. salicampi ATCC BAA-719T genome sequence has a predicted length of 3,897,716 bp, containing 3,945 total genes and a CRISPR array, with a G+C content of 43.0%.

15.
Microbiol Resour Announc ; 8(30)2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346023

RESUMO

The pigmented bacterium Deinococcus radiophilus, which is highly resistant to radiation exposure, was first isolated from irradiated lizardfish. We report a genome assembly of D. radiophilus UWO 1055T (=ATCC 27603T), with a predicted genome size of 2.7 Mbp (62.66% G+C content). A number of CRISPR-associated proteins and two CRISPR arrays were identified.

16.
Microbiol Resour Announc ; 8(28)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296671

RESUMO

Xanthobacter tagetidis is a thiophene-degrading bacterium associated with root balls of the plant genus Tagetes, which includes marigolds. It is a Gram-negative facultatively autotrophic bacterium with pleomorphic morphology exhibiting bent and branching rods. From strain TagT2CT (= ATCC 700314T), we report a genome assembly of 4,945,221 bp and a 69.5% G+C content.

17.
Artigo em Inglês | MEDLINE | ID: mdl-30533610

RESUMO

The genome of the type strain of the Kurthia genus, Kurthia zopfii ATCC 33403, was sequenced. Nonpathogenic K. zopfii has been isolated from intestinal contents, fecal material, meats, meat products, milk, water, and air, including air at high altitudes. The predicted genome size is 2,878,279 bp, with 37.05% G+C content.

18.
Artigo em Inglês | MEDLINE | ID: mdl-30533801

RESUMO

The Gram-negative genus Kangiella contains a number of halophilic species that display high levels of iso-branched fatty acids. Kangiella spongicola was isolated from a marine sponge, Chondrilla nucula, from the Florida Keys in the United States. A genome assembly of 2,825,399 bp with a 44.31% G+C content was generated from strain A79T (=ATCC BAA-2076T).

19.
Genome Announc ; 6(25)2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930075

RESUMO

Genomes from three strains of Kocuria rosea were sequenced. K. rosea ATCC 186, the type strain, was 3,958,612 bp in length with a total G+C content of 72.70%. When assembled, K. rosea ATCC 516 was 3,862,128 bp with a 72.82% G+C content. K. rosea ATCC 49321 was 4,018,783 bp in size with a 72.49% G+C content.

20.
Artigo em Inglês | MEDLINE | ID: mdl-30533891

RESUMO

The aerobic, Gram-positive, psychrotolerant bacterium Kurthia sibirica was first isolated from the stomach and intestinal contents of the Magadan mammoth recovered from the permafrost in eastern Siberia in 1977. K. sibirica was sequenced, and the predicted genome size is 3,496,665 bp, with 36.42% G+C content.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA