Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 22(2): 1619-28, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24515167

RESUMO

In traditional zonal wavefront sensing for adaptive optics, after local wavefront gradients are obtained, the entire wavefront can be calculated by assuming that the wavefront is a continuous surface. Such an approach will lead to sub-optimal performance in reconstructing wavefronts which are either discontinuous or undersampled by the zonal wavefront sensor. Here, we report a new method to reconstruct the wavefront by directly measuring local wavefront phases in parallel using multidither coherent optical adaptive technique. This method determines the relative phases of each pupil segment independently, and thus produces an accurate wavefront for even discontinuous wavefronts. We implemented this method in an adaptive optical two-photon fluorescence microscopy and demonstrated its superior performance in correcting large or discontinuous aberrations.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Microscopia de Contraste de Fase/métodos
2.
bioRxiv ; 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37961179

RESUMO

Expansion microscopy and light sheet imaging enable fine-scale resolution of intracellular features that comprise neural circuits. Most current techniques visualize sparsely distributed features across whole brains or densely distributed features within individual brain regions. Here, we visualize dense distributions of immunolabeled proteins across early visual cortical areas in adult macaque monkeys. This process may be combined with multiphoton or magnetic resonance imaging to produce multimodal atlases in large, gyrencephalic brains.

3.
Elife ; 82019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31663507

RESUMO

The active properties of dendrites can support local nonlinear operations, but previous imaging and electrophysiological measurements have produced conflicting views regarding the prevalence and selectivity of local nonlinearities in vivo. We imaged calcium signals in pyramidal cell dendrites in the motor cortex of mice performing a tactile decision task. A custom microscope allowed us to image the soma and up to 300 µm of contiguous dendrite at 15 Hz, while resolving individual spines. New analysis methods were used to estimate the frequency and spatial scales of activity in dendritic branches and spines. The majority of dendritic calcium transients were coincident with global events. However, task-associated calcium signals in dendrites and spines were compartmentalized by dendritic branching and clustered within branches over approximately 10 µm. Diverse behavior-related signals were intermingled and distributed throughout the dendritic arbor, potentially supporting a large learning capacity in individual neurons.


Assuntos
Tomada de Decisões , Córtex Motor/fisiologia , Rede Nervosa/fisiologia , Células Piramidais/fisiologia , Animais , Sinalização do Cálcio , Camundongos , Microscopia , Percepção do Tato , Vibrissas/fisiologia
4.
Nat Neurosci ; 21(4): 638-646, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507411

RESUMO

Recombinant rabies viral vectors have proven useful for applications including retrograde targeting of projection neurons and monosynaptic tracing, but their cytotoxicity has limited their use to short-term experiments. Here we introduce a new class of double-deletion-mutant rabies viral vectors that left transduced cells alive and healthy indefinitely. Deletion of the viral polymerase gene abolished cytotoxicity and reduced transgene expression to trace levels but left vectors still able to retrogradely infect projection neurons and express recombinases, allowing downstream expression of other transgene products such as fluorophores and calcium indicators. The morphology of retrogradely targeted cells appeared unperturbed at 1 year postinjection. Whole-cell patch-clamp recordings showed no physiological abnormalities at 8 weeks. Longitudinal two-photon structural and functional imaging in vivo, tracking thousands of individual neurons for up to 4 months, showed that transduced neurons did not die but retained stable visual response properties even at the longest time points imaged.


Assuntos
Córtex Cerebral/fisiologia , Vetores Genéticos/genética , Vias Neurais/fisiologia , Neurônios/metabolismo , Deleção de Sequência/genética , Tálamo/citologia , Potenciais de Ação/fisiologia , Fatores Etários , Análise de Variância , Animais , Feminino , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Optogenética , Técnicas de Patch-Clamp , Ratos , Ratos Long-Evans , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA