Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nature ; 584(7821): 403-409, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760000

RESUMO

The tuatara (Sphenodon punctatus)-the only living member of the reptilian order Rhynchocephalia (Sphenodontia), once widespread across Gondwana1,2-is an iconic species that is endemic to New Zealand2,3. A key link to the now-extinct stem reptiles (from which dinosaurs, modern reptiles, birds and mammals evolved), the tuatara provides key insights into the ancestral amniotes2,4. Here we analyse the genome of the tuatara, which-at approximately 5 Gb-is among the largest of the vertebrate genomes yet assembled. Our analyses of this genome, along with comparisons with other vertebrate genomes, reinforce the uniqueness of the tuatara. Phylogenetic analyses indicate that the tuatara lineage diverged from that of snakes and lizards around 250 million years ago. This lineage also shows moderate rates of molecular evolution, with instances of punctuated evolution. Our genome sequence analysis identifies expansions of proteins, non-protein-coding RNA families and repeat elements, the latter of which show an amalgam of reptilian and mammalian features. The sequencing of the tuatara genome provides a valuable resource for deep comparative analyses of tetrapods, as well as for tuatara biology and conservation. Our study also provides important insights into both the technical challenges and the cultural obligations that are associated with genome sequencing.


Assuntos
Evolução Molecular , Genoma/genética , Filogenia , Répteis/genética , Animais , Conservação dos Recursos Naturais/tendências , Feminino , Genética Populacional , Lagartos/genética , Masculino , Anotação de Sequência Molecular , Nova Zelândia , Caracteres Sexuais , Serpentes/genética , Sintenia
3.
Zootaxa ; 3626: 77-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26176127

RESUMO

The salamander family Hynobiidae contains over 50 species and has been the subject of a number of molecular phylogenetic investigations aimed at reconstructing branches across the entire family. In general, studies using the greatest amount of sequence data have used reduced taxon sampling, while the study with the greatest taxon sampling has used a limited sequence data set. Here, we provide insights into the phylogenetic history of the Hynobiidae using both dense taxon sampling and a large mitochondrial DNA sequence data set. We report exclusive new mitochondrial DNA data of 2566 aligned bases (with 151 excluded sites, of included sites 1157 are variable with 957 parsimony informative). This is sampled from two genic regions encoding a 12S-16S region (the 3' end of 12S rRNA, tRNA(VAI), and the 5' end of 16S rRNA), and a ND2-COI region (ND2, tRNA(Trp), tRNA(Ala), tRNA(Asn), the origin for light strand replication--O(L), tRNA(Cys), tRNAT(Tyr), and the 5' end of COI). Analyses using parsimony, Bayesian, and maximum likelihood optimality criteria produce similar phylogenetic trees, with discordant branches generally receiving low levels of branch support. Monophyly of the Hynobiidae is strongly supported across all analyses, as is the sister relationship and deep divergence between the genus Onychodactylus with all remaining hynobiids. Within this latter grouping our phylogenetic results identify six clades that are relatively divergent from one another, but for which there is minimal support for their phylogenetic placement. This includes the genus Batrachuperus, the genus Hynobius, the genus Pachyhynobius, the genus Salamandrella, a clade containing the genera Ranodon and Paradactylodon, and a clade containing the genera Liua and Pseudohynobius. This latter clade receives low bootstrap support in the parsimony analysis, but is consistent across all three analytical methods. Our results also clarify a number of well-supported relationships within the larger Batrachuperus and Hynobius clades. While the relationships identified in this study do much to clarify the phylogenetic history of the Hynobiidae, the poor resolution among major hynobiid clades, and the contrast of mtDNA-derived relationships with recent phylogenetic results from a small number of nuclear genes, highlights the need for continued phylogenetic study with larger numbers of nuclear loci.


Assuntos
Proteínas de Anfíbios/genética , DNA Mitocondrial/genética , Filogenia , Urodelos/classificação , Urodelos/genética , Animais , Ásia , Teorema de Bayes , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
4.
Commun Biol ; 4(1): 116, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514857

RESUMO

Animal mitochondrial genomic polymorphism occurs as low-level mitochondrial heteroplasmy and deeply divergent co-existing molecules. The latter is rare, known only in bivalvian mollusks. Here we show two deeply divergent co-existing mt-genomes in a vertebrate through genomic sequencing of the Tuatara (Sphenodon punctatus), the sole-representative of an ancient reptilian Order. The two molecules, revealed using a combination of short-read and long-read sequencing technologies, differ by 10.4% nucleotide divergence. A single long-read covers an entire mt-molecule for both strands. Phylogenetic analyses suggest a 7-8 million-year divergence between genomes. Contrary to earlier reports, all 37 genes typical of animal mitochondria, with drastic gene rearrangements, are confirmed for both mt-genomes. Also unique to vertebrates, concerted evolution drives three near-identical putative Control Region non-coding blocks. Evidence of positive selection at sites linked to metabolically important transmembrane regions of encoded proteins suggests these two mt-genomes may confer an adaptive advantage for an unusually cold-tolerant reptile.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Genoma Mitocondrial , Répteis/genética , Aclimatação/genética , Animais , Temperatura Baixa , Feminino , Masculino , Filogenia
5.
PLoS One ; 16(1): e0244150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33411750

RESUMO

Effective biodiversity conservation planning starts with genetic characterization within and among focal populations, in order to understand the likely impact of threats for ensuring the long-term viability of a species. The Wonder Gecko, Teratoscincus keyserlingii, is one of nine members of the genus. This species is distributed in Iran, Afghanistan, and Pakistan, with a small isolated population in the United Arab Emirates (UAE), where it is classified nationally as Critically Endangered. Within its Arabian range, anthropogenic activity is directly linked to the species' decline, with highly localised and severely fragmented populations. Here we describe the evolutionary history of Teratoscincus, by reconstructing its phylogenetic relationships and estimating its divergence times and ancestral biogeography. For conservation implications of T. keyserlingii we evaluate the genetic structure of the Arabian population using genomic data. This study supports the monophyly of most species and reveals considerable intraspecific variability in T. microlepis and T. keyserlingii, which necessitate broad systematic revisions. The UAE population of T. keyserlingii likely arrived from southern Iran during the Pleistocene and no internal structure was recovered within, implying a single population status. Regional conservation of T. keyserlingii requires improved land management and natural habitat restoration in the species' present distribution, and expansion of current protected areas, or establishment of new areas with suitable habitat for the species, mostly in northern Abu Dhabi Emirate.


Assuntos
Evolução Biológica , Conservação dos Recursos Naturais , Lagartos/genética , Animais , Arábia , Biodiversidade , Genômica , Geografia , Filogenia , Análise Espaço-Temporal
6.
Mol Phylogenet Evol ; 53(2): 537-46, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19501659

RESUMO

Plate tectonics can have profound effects on organismal distribution and is often the driving force in speciation. Through geologic processes, the Baja California Peninsula depicts two faunal patterns: one through southern vicariance with Cape separation, and the other through dispersal onto the northern peninsula, referred to as a 'dual-peninsular effect.' Here we apply a hierarchical sampling strategy that combines population-level sequence data ( approximately 800bp, nad4 region) with complete mt-genome data (aligned 15,549bp) and 5 nuclear protein encoding loci (3315bp), to test whether both patterns have occurred in one group of nightsnakes (Hypsiglena). The geologic formation of the peninsula is thought to have occurred in three stages: (1) Cape separation from mainland Mexico; (2) the northern peninsula separated, forming the northern Gulf of California; and (3) the peninsula was united through volcanic activity, while moving northward causing collision with southern California. However, the timing of events is debated. We explore phylogenetic relationships and estimate dates of divergence for nightsnakes using our hierarchical sampling strategy. Our data support both 'southern-vicariance' and 'northern-dispersal' have occurred in nightsnakes, forming a ring distribution around the Gulf of California. Two divergent forms are sympatric on the southern half of the peninsula with no indication of hybridization. Nightsnakes represent the first group to depict the 'dual-peninsular effect' with extensive overlap on the Baja California Peninsula.


Assuntos
Genética Populacional , Genoma Mitocondrial , Filogenia , Serpentes/genética , Animais , California , Núcleo Celular/genética , DNA Mitocondrial/genética , Evolução Molecular , Geografia , México , Dinâmica Populacional , Análise de Sequência de DNA
7.
Zootaxa ; 4467(1): 1-81, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30313432

RESUMO

Phylogenetic relationships of the agamid lizard genus Phrynocephalus are described in the context of plate tectonics. A near comprehensive taxon sampling reports three data sets: (1) mitochondrial DNA from ND1 to COI (3' end of ND1, tRNAGln, tRNAIle, tRNAMet, ND2, tRNATrp, tRNAAla, tRNAAsn, tRNACys, tRNATyr, and the 5' end of COI) with 1761 aligned positional sites (1595 included, 839 informative), (2) nuclear RAG-1 DNA with 2760 aligned positional sites (342 informative), and (3) 25 informative allozyme loci with 213 alleles (107 informative when coded as presence/absence). It is hypothesized that Phrynocephalus phyletic patterns and speciation reflect fault lines of ancient plates now in Asia rejuvenated by the more recent Indian and Arabian plate collisions. Molecular estimates of lineage splits are highly congruent with geologic dates from the literature.  A southern origin for the genus in Southwest Asia is resolved in phylogenetic estimates and a northern origin is statistically rejected. On the basis of monophyly and molecular evidence several taxa previously recognized as subspecies are recognized as species: P. hongyuanensis, P. sogdianus, and P. strauchi as "Current Status"; Phrynocephalus bannikovi, Phrynocephalus longicaudatus, Phrynocephalus turcomanus, and Phrynocephalus vindumi are formally "New Status". Phylogenetic evaluation indicates a soft substrate habitat of sand for the shared ancestor of modern Phrynocephalus. Size diversity maximally overlaps in the Caspian Basin and northwestern Iranian Plateau. The greatest species numbers of six in sympatry and regional allopatry are found in the southern Caspian Basin and southern Helmand Basin, both from numerous phylogenetic lineages in close proximity attributed to tectonic induced events.


Assuntos
Lagartos , Filogenia , Animais , Ásia , DNA Mitocondrial , Irã (Geográfico)
8.
Evolution ; 59(6): 1334-47, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16050109

RESUMO

The analysis of interactions between lineages at varying levels of genetic divergence can provide insights into the process of speciation through the accumulation of incompatible mutations. Ring species, and especially the Ensatina eschscholtzii system exemplify this approach. The plethodontid salamanders E. eschscholtzii xanthoptica and E. eschscholtzii platensis hybridize in the central Sierran foothills of California. We compared the genetic structure across two transects (southern and northern Calaveras Co.), one of which was resampled over 20 years, and examined diagnostic molecular markers (eight allozyme loci and mitochondrial DNA) and a diagnostic quantitative trait (color pattern). Key results across all studies were: (1) cline centers for all markers were coincident and the zones were narrow, with width estimates of 730 m to 2000 m; (2) cline centers at the northern Calaveras transect were coincident between 1981 and 2001, demonstrating repeatability over five generations; (3) there were very few if any putative F1s, but a relatively high number of backcrossed individuals in the central portion of transects; and (4) we found substantial linkage disequilibrium in all three studies and strong heterozygote deficit both in northern Calaveras, in 2001, and southern Calaveras. Both linkage disequilibrium and heterozygote deficit showed maximum values near the center of the zones. Using estimates of cline width and dispersal, we infer strong selection against hybrids. This is sufficient to promote accumulation of differences at loci that are neutral or under divergent selection, but would still allow for introgression of adaptive alleles. The evidence for strong but incomplete isolation across this centrally located contact is consistent with theory suggesting a gradual increase in postzygotic incompatibility between allopatric populations subject to divergent selection and reinforces the value of Ensatina as a system for the study of divergence and speciation at multiple stages.


Assuntos
Evolução Biológica , Genética Populacional , Hibridização Genética , Seleção Genética , Urodelos/genética , Animais , California , Citocromos b/genética , Triagem de Portadores Genéticos , Geografia , Isoenzimas , Funções Verossimilhança , Desequilíbrio de Ligação , Estudos Longitudinais , Pigmentação/fisiologia , Polimorfismo de Fragmento de Restrição , Especificidade da Espécie , Urodelos/fisiologia
9.
Methods Enzymol ; 395: 311-48, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15865975

RESUMO

Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, which can be especially powerful. We describe here the protocols commonly used for physically isolating mitochondrial DNA (mtDNA), for amplifying these by polymerase chain reaction (PCR) or rolling circle amplification (RCA), for cloning, sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences with determining and comparing complete mitochondrial DNA sequences.


Assuntos
DNA Mitocondrial/genética , Genômica/métodos , Animais , Sequência de Bases , Clonagem Molecular/métodos , Primers do DNA/genética , DNA Mitocondrial/isolamento & purificação , Rearranjo Gênico , Genômica/estatística & dados numéricos , Humanos , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Conformação de Ácido Nucleico , Filogenia , Reação em Cadeia da Polimerase/métodos , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software
10.
Cladistics ; 21(2): 194-202, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34892864

RESUMO

A new parsimony analysis of 27 complete mitochondrial genomic sequences is conducted to investigate the phylogenetic relationships of plethodontid salamanders. This analysis focuses on the amount of character conflict between phylogenetic trees recovered from newly conducted parsimony searches and the Bayesian and maximum likelihood topology reported by Mueller et al. (2004; PNAS, 101, 13820-13825). Strong support for Hemidactylium as the sister taxon to all other plethodontids is recovered from parsimony analyses. Plotting area relationships on the most parsimonious phylogenetic tree suggests that eastern North America is the origin of the family Plethodontidae supporting the "Out of Appalachia" hypothesis. A new taxonomy that recognizes clades recovered from phylogenetic analyses is proposed.

12.
Mol Phylogenet Evol ; 38(1): 50-64, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16150614

RESUMO

As part of an ongoing project to generate a mitochondrial database for terrestrial tortoises based on museum specimens, the complete mitochondrial genome sequences of 10 species and a approximately 14kb sequence from an eleventh species are reported. The sampling of the present study emphasizes Mediterranean tortoises (genus Testudo and their close relatives). Our new sequences are aligned, along with those of two testudinoid turtles from GenBank, Chrysemys picta and Mauremys reevesii, yielding an alignment of 14,858 positions, of which 3238 are parsimony informative. We develop a phylogenetic taxonomy for Testudo and related species based on well-supported, diagnosable clades. Several well-supported nodes are recovered, including the monophyly of a restricted Testudo, T. kleinmanni+T. marginata (the Chersus clade), and the placement of the enigmatic African pancake tortoise (Malacochersus tornieri) within the predominantly Palearctic greater Testudo group (Testudona tax. nov.). Despite the large amount of sequence reported, there is low statistical support for some nodes within Testudona and so we do not propose names for those groups. A preliminary and conservative estimation of divergence times implies a late Miocene diversification for the testudonan clade (6-10 million years ago), matching their first appearance in the fossil record. The multi-continental distribution of testudonan turtles can be explained by the establishment of permanent connections between Europe, Africa, and Asia at this time. The arrival of testudonan turtles to Africa occurred after one or more initial tortoise invasions gave rise to the diverse (>25 species) 'Geochelone complex.' Two unusual genomic features are reported for the mtDNA of one tortoise, M. tornieri: (1) nad4 has a shift of reading frame that we suggest is resolved by translational frameshifting of the mRNA on the ribosome during protein synthesis and (2) there are two copies of the control region and trnF, with the latter having experienced multiple-nucleotide substitutions in a pattern suggesting that each is being maintained by selection.


Assuntos
Genes Mitocondriais/genética , Filogenia , Tartarugas/classificação , Tartarugas/genética , Animais , Sequência de Bases , DNA Mitocondrial/genética , Genoma/genética , Mar Mediterrâneo , Dados de Sequência Molecular
13.
Biol Lett ; 2(3): 388-92, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-17148411

RESUMO

Darwin first recognized the importance of episodic intercontinental dispersal in the establishment of worldwide biotic diversity. Faunal exchange across the Bering Land Bridge is a major example of such dispersal. Here, we demonstrate with mitochondrial DNA evidence that three independent dispersal events from Asia to North America are the source for almost all lizard taxa found in continental eastern North America. Two other dispersal events across Beringia account for observed diversity among North American ranid frogs, one of the most species-rich groups of frogs in eastern North America. The contribution of faunal elements from Asia via dispersal across Beringia is a dominant theme in the historical assembly of the eastern North American herpetofauna.


Assuntos
Biodiversidade , Lagartos/classificação , Lagartos/genética , Filogenia , Ranidae/classificação , Ranidae/genética , Migração Animal , Animais , Evolução Biológica , DNA Mitocondrial/metabolismo , Especiação Genética , Variação Genética , América do Norte
14.
Mol Phylogenet Evol ; 41(2): 368-83, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16815049

RESUMO

We examine phylogenetic relationships among salamanders of the family Salamandridae using approximately 2700 bases of new mtDNA sequence data (the tRNALeu, ND1, tRNAIle, tRNAGln, tRNAMet, ND2, tRNATrp, tRNAAla, tRNAAsn, tRNACys, tRNATyr, and COI genes and the origin for light-strand replication) collected from 96 individuals representing 61 of the 66 recognized salamandrid species and outgroups. Phylogenetic analyses using maximum parsimony and Bayesian analysis are performed on the new data alone and combined with previously reported sequences from other parts of the mitochondrial genome. The basal phylogenetic split is a polytomy of lineages ancestral to (1) the Italian newt Salamandrina terdigitata, (2) a strongly supported clade comprising the "true" salamanders (genera Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), and (3) a strongly supported clade comprising all newts except S. terdigitata. Strongly supported clades within the true salamanders include monophyly of each genus and grouping Chioglossa and Mertensiella as the sister taxon to a clade comprising Lyciasalamandra and Salamandra. Among newts, genera Echinotriton, Pleurodeles, and Tylototriton form a strongly supported clade whose sister taxon comprises the genera Calotriton, Cynops, Euproctus, Neurergus, Notophthalmus, Pachytriton, Paramesotriton, Taricha, and Triturus. Our results strongly support monophyly of all polytypic newt genera except Paramesotriton and Triturus, which appear paraphyletic, and Calotriton, for which only one of the two species is sampled. Other well-supported clades within newts include (1) Asian genera Cynops, Pachytriton, and Paramesotriton, (2) North American genera Notophthalmus and Taricha, (3) the Triturus vulgaris species group, and (4) the Triturus cristatus species group; some additional groupings appear strong in Bayesian but not parsimony analyses. Rates of lineage accumulation through time are evaluated using this nearly comprehensive sampling of salamandrid species-level lineages. Rate of lineage accumulation appears constant throughout salamandrid evolutionary history with no obvious fluctuations associated with origins of morphological or ecological novelties.


Assuntos
Filogenia , Salamandridae/classificação , Salamandridae/genética , Animais , Sequência de Bases , Teorema de Bayes , DNA Mitocondrial/química , DNA Mitocondrial/genética , Dados de Sequência Molecular , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência de Leucina/genética , Alinhamento de Sequência
15.
Mol Phylogenet Evol ; 41(3): 663-89, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16919484

RESUMO

Taxa involving three bisexually reproducing ploidy levels make green toads a unique amphibian system. We put a cytogenetic dataset from Central Asia in a molecular framework and apply phylogenetic and demographic methods to data from the entire Palearctic range. We study the mitochondrial relationships of diploids to infer their phylogeography and the maternal ancestry of polyploids. Control regions (and tRNAs between ND1 and ND2 in representatives) characterize a deeply branched assemblage of twelve haplotype groups, diverged since the Lower Miocene. Polyploidy has evolved several times: Central Asian tetraploids (B. oblongus, B. pewzowi) have at least two maternal origins. Intriguingly, the mitochondrial ancestor of morphologically distinctive, sexually reproducing triploid taxa (B. pseudoraddei) from Karakoram and Hindukush represents a different lineage. We report another potential case of bisexual triploid toads (B. zugmayeri). Identical d-loops in diploids and tetraploids from Iran and Turkmenistan, which differ in morphology, karyotypes and calls, suggest multiple origins and retained polymorphism and/or hybridization. A similar system involves diploids, triploids and tetraploids from Kyrgyzstan and Kazakhstan where green toads exemplify vertebrate genomic plasticity. A new form from Sicily and its African sister species (B. boulengeri) allow internal calibration and divergence time estimates for major clades. The subgroup may have originated in Eurasia rather than Africa since the earliest diverged lineages (B. latastii, B. surdus) and earliest fossils occur in Asia. We delineate ranges, contact and hybrid zones. Phylogeography, including one of the first non-avian datasets from Central Asian high mountains, reflects Quaternary climate and glaciation.


Assuntos
Bufonidae/genética , DNA Mitocondrial/genética , Evolução Molecular , África do Norte , Animais , Ásia , Bufonidae/classificação , Europa (Continente) , Variação Genética , Genoma/genética , Geografia , NADH Desidrogenase/genética , Filogenia , Reação em Cadeia da Polimerase/veterinária , Poliploidia
16.
Syst Biol ; 53(5): 735-57, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15545252

RESUMO

Squamate reptiles (snakes, lizards, and amphisbaenians) serve as model systems for evolutionary studies of a variety of morphological and behavioral traits, and phylogeny is crucial to many generalizations derived from such studies. Specifically, the traditional dichotomy between Iguania (anoles, iguanas, chameleons, etc.) and Scleroglossa (skinks, geckos, snakes, etc.) has been correlated with major evolutionary shifts within Squamata. We present a molecular phylogenetic study of 69 squamate species using approximately 4600 (2876 parsimony-informative) base pairs (bp) of DNA sequence data from the nuclear genes RAG-1(approximately 2750 bp) and c-mos(approximately 360 bp) and the mitochondrial ND2 region (approximately 1500 bp), sampling all major clades and most major subclades. Under our hypothesis, species previously placed in Iguania, Anguimorpha, and almost all recognized squamate families form strongly supported monophyletic groups. However, species previously placed in Scleroglossa, Varanoidea, and several other higher taxa do not form monophyletic groups. Iguania, the traditional sister group of Scleroglossa, is actually highly nested within Scleroglossa. This unconventional rooting does not seem to be due to long-branch attraction, base composition biases among taxa, or convergence caused by similar selective forces acting on nonsister taxa. Studies of functional tongue morphology and feeding mode have contrasted the similar states found in Sphenodon(the nearest outgroup to squamates) and Iguania with those of Scleroglossa, but our findings suggest that similar states in Sphenodonand Iguania result from homoplasy. Snakes, amphisbaenians, and dibamid lizards, limbless forms whose phylogenetic positions historically have been impossible to place with confidence, are not grouped together and appear to have evolved this condition independently. Amphisbaenians are the sister group of lacertids, and dibamid lizards diverged early in squamate evolutionary history. Snakes are grouped with iguanians, lacertiforms, and anguimorphs, but are not nested within anguimorphs.


Assuntos
Filogenia , Répteis/classificação , Répteis/genética , Animais , Composição de Bases , Sequência de Bases , Teorema de Bayes , Simulação por Computador , Primers do DNA , DNA Mitocondrial/genética , Genes RAG-1/genética , Genes mos/genética , Funções Verossimilhança , Modelos Genéticos , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie
17.
Proc Natl Acad Sci U S A ; 101(38): 13820-5, 2004 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-15365171

RESUMO

The evolutionary history of the largest salamander family (Plethodontidae) is characterized by extreme morphological homoplasy. Analysis of the mechanisms generating such homoplasy requires an independent molecular phylogeny. To this end, we sequenced 24 complete mitochondrial genomes (22 plethodontids and two outgroup taxa), added data for three species from GenBank, and performed partitioned and unpartitioned Bayesian, maximum likelihood, and maximum parsimony phylogenetic analyses. We explored four dataset partitioning strategies to account for evolutionary process heterogeneity among genes and codon positions, all of which yielded increased model likelihoods and decreased numbers of supported nodes in the topologies (Bayesian posterior probability >0.95) relative to the unpartitioned analysis. Our phylogenetic analyses yielded congruent trees that contrast with the traditional morphology-based taxonomy; the monophyly of three of four major groups is rejected. Reanalysis of current hypotheses in light of these evolutionary relationships suggests that (i) a larval life history stage reevolved from a direct-developing ancestor multiple times; (ii) there is no phylogenetic support for the "Out of Appalachia" hypothesis of plethodontid origins; and (iii) novel scenarios must be reconstructed for the convergent evolution of projectile tongues, reduction in toe number, and specialization for defensive tail loss. Some of these scenarios imply morphological transformation series that proceed in the opposite direction than was previously thought. In addition, they suggest surprising evolutionary lability in traits previously interpreted to be conservative.


Assuntos
Evolução Biológica , DNA Mitocondrial/genética , Genoma , Urodelos/genética , Animais , Teorema de Bayes , Variação Genética , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Urodelos/classificação , Urodelos/crescimento & desenvolvimento
18.
Mol Phylogenet Evol ; 22(1): 111-7, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11796034

RESUMO

The first phylogenetic hypothesis for the Sri Lankan agamid lizard genus Ceratophora is presented based on 1670 aligned base positions (472 parsimony informative) of mitochondrial DNA sequences, representing coding regions for eight tRNAs, ND2, and portions of ND1 and COI. Phylogenetic analysis reveals multiple origins and possibly losses of rostral horns in the evolutionary history of Ceratophora. Our data suggest a middle Miocene origin of Ceratophora with the most recent branching of recognized species occurring at the Pliocene/Pleistocene boundary. Haplotype divergence suggests that an outgroup species, Lyriocephalus scutatus, dates at least to the Pliocene. These phylogenetic results provide a framework for comparative studies of the behavioral ecological importance of horn evolution in this group.


Assuntos
Cornos/anatomia & histologia , Lagartos/anatomia & histologia , Lagartos/genética , Animais , Evolução Biológica , DNA Mitocondrial/genética , Variação Genética , Lagartos/classificação , Modelos Genéticos , Filogenia , Especificidade da Espécie , Sri Lanka , Fatores de Tempo
19.
Mol Phylogenet Evol ; 33(1): 22-31, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15324836

RESUMO

Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in Bipes biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with the block cob, trnT, trnP, as they are in birds.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Filogenia , Répteis/genética , Animais , Sequência de Bases , Extremidades/anatomia & histologia , Ordem dos Genes , Geografia , Fenômenos Geológicos , Geologia , Dados de Sequência Molecular , Répteis/anatomia & histologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA