RESUMO
Measurement of total bilirubin (TBil) concentration in serum is the gold standard approach for diagnosing neonatal unconjugated hyperbilirubinemia. It is of utmost importance that the measured TBil concentration is sufficiently accurate to prevent under treatment, unnecessary escalation of care, or overtreatment. However, it is widely recognized that TBil measurements urgently require improvement in neonatal clinical chemistry. External quality assessment (EQA) programs for TBil assess for differences between laboratories and provide supporting evidence of significant differences between various methods, manufacturers and measurement platforms. At the same time, many countries have adopted or only slightly adapted the neonatal hyperbilirubinemia management guidelines from the USA or UK, often without addressing differences in the methodology of TBil measurements. In this report, we provide an overview of the components of bilirubin that are measured by laboratory platforms, the availability of current reference measurement procedures and reference materials, and the role of EQA surveys in this context. Furthermore, the current status of agreement in neonatal bilirubin against clinical decision thresholds is reviewed. We advocate for enhancements in accuracy and comparability of neonatal TBil measurements, propose a path forward to accomplish this, and reflect on the position of the International Federation for Clinical Chemistry and Laboratory Medicine (IFCC) Working Group Neonatal Bilirubin (WG-NB) in this matter.
Assuntos
Bilirrubina , Hiperbilirrubinemia Neonatal , Humanos , Recém-Nascido , Bilirrubina/sangue , Hiperbilirrubinemia Neonatal/sangue , Hiperbilirrubinemia Neonatal/diagnóstico , Hiperbilirrubinemia Neonatal/terapia , Padrões de ReferênciaRESUMO
Objectives Our recent survey of 44 mass spectrometry laboratories across 17 countries identified variation in internal standard (IS) choice for the measurement of serum/plasma 17α-hydroxyprogesterone (17OHP) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The choice of IS may contribute to inter-method variations. This study evaluated the effect of two common isotopically labeled IS on the quantification of 17OHP by LC-MS/MS. Methods Three collaborating LC-MS/MS laboratories from Asia, Europe and Australia, who routinely measure serum 17OHP, compared two IS, (1) IsoSciences carbon-13 labeled 17OHP-[2,3,4-13C3], and (2) IsoSciences deuterated 17OHP-[2,2,4,6,6,21,21,21-2H]. This was performed as part of their routine patient runs using their respective laboratory standard operating procedure. Results The three laboratories measured 99, 89, 95 independent samples, respectively (up to 100 nmol/L) using the 13C- and 2H-labeled IS. The slopes of the Passing-Bablok regression ranged 0.98-1.00 (all 95% confidence interval [CI] estimates included the line of identity), and intercept of <0.1 nmol/L. Average percentage differences of -0.04% to -5.4% were observed between the two IS materials, which were less than the optimal bias specification of 7% determined by biological variation, indicating no clinically significant difference. The results of 12 Royal College of Pathologists of Australasia Quality Assurance Programs (RCPAQAP) proficiency samples (1-40 nmol/L) measured by the laboratories were all within the RCPAQAP analytical performance specifications for both IS. Conclusions Overall, the comparison between the results of 13C- and 2H-labeled IS for 17OHP showed good agreement, and show no clinically significant bias when incorporated into the LC-MS/MS methods employed in the collaborating laboratories.
Assuntos
17-alfa-Hidroxiprogesterona/sangue , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , 17-alfa-Hidroxiprogesterona/normas , Humanos , Isótopos , Padrões de ReferênciaRESUMO
Over two decades, the Organic Analysis Working Group (OAWG) of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology (CCQM) has organized a number of comparisons for clinically relevant small molecule organic biomarkers. The aim of the OAWG community is to be part of the coordinated international movement towards accuracy and comparability of clinical measurements that will, in turn, minimize the wastage of repeat testing and unnecessary therapy to create a sustainable healthcare industry. International and regional directives/requirements on metrological traceability of calibrators and control materials are in place. Metrology institutes worldwide maintain infrastructure for the practical realization of metrological traceability and demonstrate the equivalence of their measurement capabilities through participation in key comparisons organized under the auspices of the CCQM. These institutes provide certified reference materials, as well as other dedicated value-assignment services benefiting the in-vitro diagnostic (IVD) industry, reference (calibration) laboratories and the clinical chemistry laboratories. The roles of these services in supporting national, regional, and international activities to ensure the metrological traceability of clinical chemistry measurements are described. Graphical abstract.
Assuntos
Biomarcadores/análise , Compostos Orgânicos/análise , Bibliotecas de Moléculas Pequenas/análise , Calibragem , Testes de Química Clínica , Humanos , Técnicas In Vitro , Padrões de Referência , Reprodutibilidade dos TestesRESUMO
Metrological traceability for organic chemical measurements is a documented unbroken chain of calibrations with stated uncertainties that ideally link the measurement result for a sample to a primary calibrator in appropriate SI units (e.g., mass fraction). A comprehensive chemical purity determination of the organic calibrator is required to ensure a true assessment of this result. We explore the evolution of chemical purity capabilities across metrology institute members of the Consultative Committee for Amount of Substance: Metrology in Chemistry and Biology's Organic Analysis Working Group (OAWG). The OAWG work program has promoted the development of robust measurement capabilities, using indirect "mass balance" determinations via rigorous assessment of impurities and direct determination using quantitative nuclear magnetic resonance spectroscopy methods. A combination of mass balance and qNMR has been shown to provide a best practice approach. Awareness of the importance of the traceability of organic calibrators continues to grow across stakeholder groups, particularly in key areas such as clinical chemistry where activities related to the Joint Committee for Traceability in Laboratory Medicine have raised the profile of traceable calibrators.
RESUMO
Currently a large range of pure substance reference materials are available for calibration of doping-control methods. These materials enable traceability to the International System of Units (SI) for the results generated by World Anti-Doping Agency (WADA)-accredited laboratories. Only a small number of prohibited substances have threshold limits for which quantification is highly important. For these analytes only the highest quality reference materials that are available should be used. Many prohibited substances have no threshold limits and reference materials provide essential identity confirmation. For these reference materials the correct identity is critical and the methods used to assess identity in these cases should be critically evaluated. There is still a lack of certified matrix reference materials to support many aspects of doping analysis. However, in key areas a range of urine matrix materials have been produced for substances with threshold limits, for example 19-norandrosterone and testosterone/epitestosterone (T/E) ratio. These matrix-certified reference materials (CRMs) are an excellent independent means of checking method recovery and bias and will typically be used in method validation and then regularly as quality-control checks. They can be particularly important in the analysis of samples close to threshold limits, in which measurement accuracy becomes critical. Some reference materials for isotope ratio mass spectrometry (IRMS) analysis are available and a matrix material certified for steroid delta values is currently under production. In other new areas, for example the Athlete Biological Passport, peptide hormone testing, designer steroids, and gene doping, reference material needs still need to be thoroughly assessed and prioritised.
Assuntos
Anabolizantes/urina , Dopagem Esportivo , Substâncias para Melhoria do Desempenho/urina , Detecção do Abuso de Substâncias/métodos , Dopagem Esportivo/prevenção & controle , Humanos , Espectrometria de Massas , Padrões de Referência , Sensibilidade e EspecificidadeRESUMO
In response to the sovereign requirement for national standards the National Measurement Institute, Australia (NMIA) has developed a measuring system using isotope dilution mass spectrometry (IDMS) to certify forensic aqueous ethanol solutions. NMIA participated in an international study, CCQM-K27, organized under the auspices of the International Committee for Weights and Measures to compare our measuring system with the techniques being used for certifying aqueous ethanol solutions in other metrology institutes. This comparison provided objective evidence that the measuring system developed was fit for the purpose of certifying aqueous ethanol solutions that ranged in concentration from 0.8 mg/g to 120 mg/g. A complete measurement uncertainty budget is presented and shows that the largest contribution to measurement uncertainty was from method precision followed by the contribution from the calibration solution. The fundamental technology of the measuring system was gas chromatography of the aqueous ethanol solutions using porous layer open tubular columns, and this effectively produced peak area measurements with both GC/MS and GC-FID. It was found that deactivation of the chromatographic system was critical for obtaining reproducible peak shapes and peak area measurements. A range of measuring systems, all using this gas chromatographic technology, was investigated. When conditions were carefully controlled there was no difference in measurement results from GC-IDMS, GC/MS or GC-FID. There was also no difference in results from on-column or split injection systems. A significant issue with the IDMS system was the fragmentation of 13C2-ethanol to produce an ion with the same mass as the molecular ion of ethanol which lead to isobaric interference; careful measurement of this fragmentation ratio was necessary to calculate accurate mass fraction values. NMIA has adopted the GC-IDMS split measuring system to certify aqueous ethanol solutions for Australian legal requirements since this measuring system provided higher analytical specificity than GC-FID, accuracy that was fit for purpose and was operationally less stringent than on-column techniques.
RESUMO
Highly accurate measurements of the amount of substance of organic molecules in a test material can be obtained using exactly matched calibration solutions and internal standards that are labeled with stable isotope atoms by measuring the amount ratio of analyte to internal standard using mass spectrometry. Estimating the uncertainty of quantitative measurements of organic molecules is a means of evaluating accuracy and of establishing traceability to the International System of Units (SI) and requires a measurement function that fully describes the measuring system. This paper presents the derivation of the equation (measurement function) that describes this complete measurement after the internal standard has equilibrated with the test material matrix. It is similar to the equation for inorganic measurements using isotope dilution techniques, but potential biases during chemical processing arising from whole organic molecule analysis compared to inorganic atomic analysis required greater investigation of the yield factors that occur during organic molecule measurements. In the new equation, a series of ratios of proportionality factors are used to relate the amount of substance in a test material to chromatographic peak area ratios corresponding to mass spectrometer ion current ratios. All the proportionality factors are grouped together to define a measuring system factor F(X), the value of which is determined by the fundamental chemical processes affecting the yields of analyte, internal standard, and reference standard of the analyte in the measurement process. Any factors in the measurement process that affect the mole ratio of analyte to internal standard in the calibration solution differently from the test solution will result in a nonunity value for F(X) and a proportional bias to the measurement, and in this way F(X) represents the concept of recovery of the amount ratio of analyte to internal standard. Thus highly accurate measurements require F(X) or its constituent factors to be evaluated. In addition, the uncertainty in the evaluation of F(X) or of its constituent factors must be included in a complete uncertainty estimation of the analytical procedure. The many different permutations of proportionality factor ratios that may result in a unity value of F(X) are discussed resulting in a case for evaluating F(X) rather than the more common practice of evaluating individual factors for each major stage of the measurement procedure. Since the new measurement function describes the complete chemical process that constitutes the measurement, traceability to the SI is assured when all factors in the function are measured traceably and have their associated uncertainty estimated correctly. Ignoring F(X) would invalidate traceability to the SI and would prevent a complete estimation of measurement uncertainty.
RESUMO
A reversed-phase high-performance liquid chromatographic method with tandem mass-spectrometric detection was developed and validated for the simultaneous analysis of eight quinolones and fluoroquinolones (oxolinic acid, flumequine, piromidic acid, enrofloxacin, ciprofloxacin, danofloxacin, sarafloxacin and orbifloxacin) in trout tissue, prawns and abalone. The analytes were extracted from homogenised tissue using acetonitrile and the extracts subjected to an automated two-stage solid-phase extraction process involving polymeric reversed-phase and anion-exchange cartridges. Good recoveries were obtained for all analytes and the limit of quantification was 5 microg/kg (10 microg/kg for ciprofloxacin). The limit of detection was 1-3 microg/kg, depending on the analyte and matrix. Confirmation of the identity of a residue was achieved by further tandem mass-spectrometric analysis. A procedure for estimating the uncertainty associated with the measurement is presented.