Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 29(5): 1478-1490, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361126

RESUMO

The N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) catalyzes the production of N-acylethanolamines (NAEs), a family of endogenous bioactive lipids, which are involved in various biological processes ranging from neuronal functions to energy homeostasis and feeding behaviors. Reward-dependent behaviors depend on dopamine (DA) transmission between the ventral tegmental area (VTA) and the nucleus accumbens (NAc), which conveys reward-values and scales reinforced behaviors. However, whether and how NAPE-PLD may contribute to the regulation of feeding and reward-dependent behaviors has not yet been investigated. This biological question is of paramount importance since NAEs are altered in obesity and metabolic disorders. Here, we show that transcriptomic meta-analysis highlights a potential role for NAPE-PLD within the VTA→NAc circuit. Using brain-specific invalidation approaches, we report that the integrity of NAPE-PLD is required for the proper homeostasis of NAEs within the midbrain VTA and it affects food-reward behaviors. Moreover, region-specific knock-down of NAPE-PLD in the VTA enhanced food-reward seeking and reinforced behaviors, which were associated with increased in vivo DA release dynamics in response to both food- and non-food-related rewards together with heightened tropism towards food consumption. Furthermore, midbrain knock-down of NAPE-PLD, which increased energy expenditure and adapted nutrient partitioning, elicited a relative protection against high-fat diet-mediated body fat gain and obesity-associated metabolic features. In conclusion, these findings reveal a new key role of VTA NAPE-PLD in shaping DA-dependent events, feeding behaviors and energy homeostasis, thus providing new insights on the regulation of body metabolism.


Assuntos
Dopamina , Comportamento Alimentar , Homeostase , Núcleo Accumbens , Fosfolipase D , Recompensa , Área Tegmentar Ventral , Área Tegmentar Ventral/metabolismo , Animais , Homeostase/fisiologia , Comportamento Alimentar/fisiologia , Fosfolipase D/metabolismo , Fosfolipase D/genética , Masculino , Camundongos , Núcleo Accumbens/metabolismo , Dopamina/metabolismo , Metabolismo Energético/fisiologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/genética , Neurônios Dopaminérgicos/metabolismo , Fosfatidiletanolaminas/metabolismo , Etanolaminas
2.
Am J Physiol Renal Physiol ; 326(6): F917-F930, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634131

RESUMO

Cannabis and synthetic cannabinoid consumption are increasing worldwide. Cannabis contains numerous phytocannabinoids that act on the G protein-coupled cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 expressed throughout the body, including the kidney. Essentially every organ, including the kidney, produces endocannabinoids, which are endogenous ligands to these receptors. Cannabinoids acutely increase urine output in rodents and humans, thus potentially influencing total body water and electrolyte homeostasis. As the kidney collecting duct (CD) regulates total body water, acid/base, and electrolyte balance through specific functions of principal cells (PCs) and intercalated cells (ICs), we examined the cell-specific immunolocalization of CB1R in the mouse CD. Antibodies against either the C-terminus or N-terminus of CB1R consistently labeled aquaporin 2 (AQP2)-negative cells in the cortical and medullary CD and thus presumably ICs. Given the well-established role of ICs in urinary acidification, we used a clearance approach in mice that were acid loaded with 280 mM NH4Cl for 7 days and nonacid-loaded mice treated with the cannabinoid receptor agonist WIN55,212-2 (WIN) or a vehicle control. Although WIN had no effect on urinary acidification, these WIN-treated mice had less apical + subapical AQP2 expression in PCs compared with controls and developed acute diabetes insipidus associated with the excretion of large volumes of dilute urine. Mice maximally concentrated their urine when WIN and 1-desamino-8-d-arginine vasopressin [desmopressin (DDAVP)] were coadministered, consistent with central rather than nephrogenic diabetes insipidus. Although ICs express CB1R, the physiological role of CB1R in this cell type remains to be determined.NEW & NOTEWORTHY The CB1R agonist WIN55,212-2 induces central diabetes insipidus in mice. This research integrates existing knowledge regarding the diuretic effects of cannabinoids and the influence of CB1R on vasopressin secretion while adding new mechanistic insights about total body water homeostasis. Our findings provide a deeper understanding about the potential clinical impact of cannabinoids on human physiology and may help identify targets for novel therapeutics to treat water and electrolyte disorders such as hyponatremia and volume overload.


Assuntos
Aquaporina 2 , Benzoxazinas , Diurese , Túbulos Renais Coletores , Morfolinas , Naftalenos , Receptor CB1 de Canabinoide , Animais , Receptor CB1 de Canabinoide/metabolismo , Diurese/efeitos dos fármacos , Benzoxazinas/farmacologia , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/efeitos dos fármacos , Aquaporina 2/metabolismo , Morfolinas/farmacologia , Naftalenos/farmacologia , Masculino , Diabetes Insípido Neurogênico/metabolismo , Diabetes Insípido Neurogênico/fisiopatologia , Camundongos Endogâmicos C57BL , Agonistas de Receptores de Canabinoides/farmacologia , Camundongos , Modelos Animais de Doenças
3.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654741

RESUMO

Hypothalamic regulation of feeding and energy expenditure is a fundamental and evolutionarily conserved neurophysiological process critical for survival. Dysregulation of these processes, due to environmental or genetic causes, can lead to a variety of pathological conditions ranging from obesity to anorexia. Melanocortins and endogenous cannabinoids (eCBs) have been implicated in the regulation of feeding and energy homeostasis; however, the interaction between these signaling systems is poorly understood. Here, we show that the eCB 2-arachidonoylglycerol (2-AG) regulates the activity of melanocortin 4 receptor (MC4R) cells in the paraventricular nucleus of the hypothalamus (PVNMC4R) via inhibition of afferent GABAergic drive. Furthermore, the tonicity of eCBs signaling is inversely proportional to energy state, and mice with impaired 2-AG synthesis within MC4R neurons weigh less, are hypophagic, exhibit increased energy expenditure, and are resistant to diet-induced obesity. These mice also exhibit MC4R agonist insensitivity, suggesting that the energy state-dependent, 2-AG-mediated suppression of GABA input modulates PVNMC4R neuron activity to effectively respond to the MC4R natural ligands to regulate energy homeostasis. Furthermore, post-developmental disruption of PVN 2-AG synthesis results in hypophagia and death. These findings illustrate a functional interaction at the cellular level between two fundamental regulators of energy homeostasis, the melanocortin and eCB signaling pathways in the hypothalamic feeding circuitry.


Assuntos
Canabinoides/metabolismo , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Receptor Tipo 4 de Melanocortina/fisiologia , Animais , Ácidos Araquidônicos/fisiologia , Peso Corporal , Endocanabinoides/fisiologia , Jejum , Comportamento Alimentar/fisiologia , Teste de Tolerância a Glucose , Glicerídeos/fisiologia , Resistência à Insulina , Camundongos , Obesidade/genética , Receptor Tipo 4 de Melanocortina/agonistas , Ácido gama-Aminobutírico/metabolismo
4.
Molecules ; 29(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675703

RESUMO

While the opioid crisis has justifiably occupied news headlines, emergency rooms are seeing many thousands of visits for another cause: cannabinoid toxicity. This is partly due to the spread of cheap and extremely potent synthetic cannabinoids that can cause serious neurological and cardiovascular complications-and deaths-every year. While an opioid overdose can be reversed by naloxone, there is no analogous treatment for cannabis toxicity. Without an antidote, doctors rely on sedatives, with their own risks, or 'waiting it out' to treat these patients. We have shown that the canonical synthetic 'designer' cannabinoids are highly potent CB1 receptor agonists and, as a result, competitive antagonists may struggle to rapidly reverse an overdose due to synthetic cannabinoids. Negative allosteric modulators (NAMs) have the potential to attenuate the effects of synthetic cannabinoids without having to directly compete for binding. We tested a group of CB1 NAMs for their ability to reverse the effects of the canonical synthetic designer cannabinoid JWH018 in vitro in a neuronal model of endogenous cannabinoid signaling and also in vivo. We tested ABD1085, RTICBM189, and PSNCBAM1 in autaptic hippocampal neurons that endogenously express a retrograde CB1-dependent circuit that inhibits neurotransmission. We found that all of these compounds blocked/reversed JWH018, though some proved more potent than others. We then tested whether these compounds could block the effects of JWH018 in vivo, using a test of nociception in mice. We found that only two of these compounds-RTICBM189 and PSNCBAM1-blocked JWH018 when applied in advance. The in vitro potency of a compound did not predict its in vivo potency. PSNCBAM1 proved to be the more potent of the compounds and also reversed the effects of JWH018 when applied afterward, a condition that more closely mimics an overdose situation. Lastly, we found that PSNCBAM1 did not elicit withdrawal after chronic JWH018 treatment. In summary, CB1 NAMs can, in principle, reverse the effects of the canonical synthetic designer cannabinoid JWH018 both in vitro and in vivo, without inducing withdrawal. These findings suggest a novel pharmacological approach to at last provide a tool to counter cannabinoid toxicity.


Assuntos
Canabinoides , Receptor CB1 de Canabinoide , Animais , Humanos , Camundongos , Regulação Alostérica/efeitos dos fármacos , Canabinoides/farmacologia , Canabinoides/química , Indóis/farmacologia , Indóis/química , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Antagonistas de Receptores de Canabinoides/química , Antagonistas de Receptores de Canabinoides/farmacologia
5.
Pharmacol Res ; 187: 106560, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36417942

RESUMO

Painful peripheral neuropathy is a common neurological complication associated with human immunodeficiency virus (HIV) infection and anti-retroviral therapy. We characterized the impact of two CB2 cannabinoid agonists (AM1710 and LY2828360 - ligands differing in signaling bias and CNS penetration) on neuropathic nociception induced by the antiretroviral agent Zalcitabine (2',3'-dideoxycytidine; ddC). We also used a conditional knockout approach to identify cell types mediating CB2 agonist-induced antinociceptive efficacy and sparing of morphine tolerance. AM1710 and LY2828360 alleviated ddC-induced neuropathic nociception in mice of both sexes. These benefits were absent in global CB2 knockout mice, which exhibited robust morphine antinociception. Like morphine, AM1710 blunted ddC-induced increases in proinflammatory cytokine (IL-1ß, TNF-α) and chemokine (CCL2) mRNA expression levels. We generated advillinCre/+;CB2f/f conditional knockout mice to ascertain the role of CB2 localized to primary sensory neurons in CB2-mediated therapeutic effects. Antinociceptive efficacy of both AM1710 and LY2828360, but not reference analgesics, were absent in advillinCre/+;CB2f/f mice, which exhibited robust ddC-induced neuropathy. In ddC-treated CB2f/f mice, LY2828360 suppressed development of morphine tolerance and reversed established morphine tolerance, albeit with greater efficacy in male compared to female mice. LY2828360 failed to block or reverse morphine tolerance in advillinCre/+;CB2f/f mice. The present studies indicate that CB2 activation may alleviate HIV-associated antiretroviral neuropathy and identify a previously unreported mechanism through which CB2 activation produces antinociceptive efficacy. Our results also provide the first evidence that a CB2 agonist can reverse established morphine tolerance and demonstrate that CB2 localized to peripheral sensory neurons mediates the opioid tolerance sparing efficacy of CB2 agonists.


Assuntos
Analgésicos Opioides , Terapia Antirretroviral de Alta Atividade , Tolerância a Medicamentos , Hiperalgesia , Morfina , Doenças do Sistema Nervoso Periférico , Receptor CB2 de Canabinoide , Animais , Feminino , Humanos , Masculino , Camundongos , Analgésicos Opioides/uso terapêutico , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Camundongos Knockout , Morfina/uso terapêutico , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Células Receptoras Sensoriais/metabolismo , Terapia Antirretroviral de Alta Atividade/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico
6.
Brain ; 145(1): 179-193, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35136958

RESUMO

Traumatic brain injury is an important risk factor for development of Alzheimer's disease and dementia. Unfortunately, no effective therapies are currently available for prevention and treatment of the traumatic brain injury-induced Alzheimer's disease-like neurodegenerative disease. This is largely due to our limited understanding of the mechanisms underlying traumatic brain injury-induced neuropathology. Previous studies showed that pharmacological inhibition of monoacylglycerol lipase, a key enzyme degrading the endocannabinoid 2-arachidonoylglycerol, attenuates traumatic brain injury-induced neuropathology. However, the mechanism responsible for the neuroprotective effects produced by inhibition of monoacylglycerol lipase in traumatic brain injury remains unclear. Here we first show that genetic deletion of monoacylglycerol lipase reduces neuropathology and averts synaptic and cognitive declines in mice exposed to repeated mild closed head injury. Surprisingly, these neuroprotective effects result primarily from inhibition of 2-arachidonoylglycerol metabolism in astrocytes, rather than in neurons. Single-cell RNA-sequencing data reveal that astrocytic monoacylglycerol lipase knockout mice display greater resilience to traumatic brain injury-induced changes in expression of genes associated with inflammation or maintenance of brain homeostasis in astrocytes and microglia. The monoacylglycerol lipase inactivation-produced neuroprotection is abrogated by deletion of the cannabinoid receptor-1 or by adeno-associated virus vector-mediated silencing of astrocytic peroxisome proliferator-activated receptor-γ. This is further supported by the fact that overexpression of peroxisome proliferator-activated receptor-γ in astrocytes prevents traumatic brain injury-induced neuropathology and impairments in spatial learning and memory. Our results reveal a previously undefined cell type-specific role of 2-arachidonoylglycerol metabolism and signalling pathways in traumatic brain injury-induced neuropathology, suggesting that enhanced 2-arachidonoylglycerol signalling in astrocytes is responsible for the monoacylglycerol lipase inactivation-produced alleviation of neuropathology and deficits in synaptic and cognitive functions in traumatic brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Neurodegenerativas , Animais , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Endocanabinoides/farmacologia , Humanos , Camundongos , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Doenças Neurodegenerativas/metabolismo
7.
Cereb Cortex ; 32(23): 5420-5437, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35151230

RESUMO

Chronic adolescent administration of marijuana's major psychoactive compound, ∆9-tetrahydrocannabinol (Δ9-THC), produces adaptive changes in adult social and cognitive functions sustained by prelimbic prefrontal cortex (PL-PFC). Memory and learning processes in PL-PFC neurons can be regulated through cholinergic muscarinic-2 receptors (M2R) and modulated by activation of cannabinoid-1 receptors (CB1Rs) targeted by Δ9-THC. Thus, chronic exposure to Δ9-THC during adolescence may alter the expression and/or distribution of M2Rs in PL-PFC neurons receiving CB1R terminals. We tested this hypothesis by using electron microscopic dual CB1R and M2R immunolabeling in adult C57BL/6 J male mice that had received vehicle or escalating dose of Δ9-THC through adolescence. In vehicle controls, CB1R immunolabeling was mainly localized to axonal profiles virtually devoid of M2R but often apposing M2R-immunoreactive dendrites and dendritic spines. The dendrites received inputs from CB1R-labeled or unlabeled terminals, whereas spines received asymmetric synapses exclusively from axon terminals lacking CB1Rs. Adolescent Δ9-THC significantly increased plasmalemmal M2R-immunogold density exclusively in large dendrites receiving input from CB1R-labeled terminals. In contrast, cytoplasmic M2R-immunogold density decreased in small spines of the Δ9-THC-treated adult mice. We conclude that Δ9-THC engagement of CB1Rs during adolescence increases M2R plasmalemmal accumulation in large proximal dendrites and decreases M2R cytoplasmic expression in small spines of PL-PFC.


Assuntos
Dronabinol , Córtex Pré-Frontal , Receptor CB1 de Canabinoide , Receptor Muscarínico M2 , Animais , Masculino , Camundongos , Dronabinol/farmacologia , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor Muscarínico M2/metabolismo
8.
Mol Pharmacol ; 102(6): 259-268, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36153039

RESUMO

The two main constituents of cannabis are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). While Δ9-THC pharmacology has been studied extensively, CBD-long considered inactive-is now the subject of vigorous research related to epilepsy, pain, and inflammation and is popularly embraced as a virtual cure-all. However, our understanding of CBD pharmacology remains limited, although CBD inhibits cannabinoid CB1 receptor signaling, likely as a negative allosteric modulator. Cannabis synthesizes (-)-CBD, but CBD can also exist as an enantiomer, (+)-CBD. We enantioselectively synthesized both CBD enantiomers using established conditions and describe here a new, practical, and reliable, NMR-based method for confirming the enantiomeric purity of two CBD enantiomers. We also investigated the pharmacology of (+)-CBD in autaptic hippocampal neurons, a well-characterized neuronal model of endogenous cannabinoid signaling, and in CHO-K1 cells. We report the inhibition constant for displacing CP55,940 at CB1 by (+)-CBD, is 5-fold lower than (-)-CBD. We find that (+)-CBD is ∼10 times more potent at inhibiting depolarization-induced suppression of excitation (DSE), a form of endogenous cannabinoid-mediated retrograde synaptic plasticity. (+)-CBD also inhibits CB1 suppression of cAMP accumulation but with less potency, indicating that the signaling profiles of the enantiomers differ in a pathway-specific manner. In addition, we report that (+)-CBD stereoselectively and potently activates the sphingosine-1 phosphate (S1P) receptors, S1P1 and S1P3 These results provide an attractive method for synthesizing and distinguishing enantiomers of CBD and related phytocannabinoids and provide further evidence that these enantiomers have their own unique and interesting signaling properties. SIGNIFICANCE STATEMENT: Cannabidiol (CBD) is the subject of considerable scientific and popular interest, but we know little of the enantiomers of CBD. We find that the enantiomer (+)-CBD is substantially more potent inhibitor of cannabinoid CB1 receptors and that it activates sphingosine-1-phosphate receptors in an enantiomer-specific manner; we have additionally developed an improved method for the synthesis of enantiomers of CBD and related compounds.


Assuntos
Canabidiol , Canabidiol/farmacologia , Dronabinol/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Endocanabinoides , Transdução de Sinais , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
9.
J Neurochem ; 160(6): 625-642, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34970999

RESUMO

Cannabinoid receptor 1 (CB1R), a G protein-coupled receptor, plays a fundamental role in synaptic plasticity. Abnormal activity and deregulation of CB1R signaling result in a broad spectrum of pathological conditions. CB1R signaling is regulated by receptor desensitization including phosphorylation of residues within the intracellular C terminus by G protein-coupled receptor kinases (GRKs) that may lead to endocytosis. Furthermore, CB1R signaling is regulated by the protein Src homology 3-domain growth factor receptor-bound 2-like (SGIP1) that hinders receptor internalization, while enhancing CB1R association with ß-arrestin. It has been postulated that phosphorylation of two clusters of serine/threonine residues, 425 SMGDS429 and 460 TMSVSTDTS468 , within the CB1R C-tail controls dynamics of the association between receptor and its interaction partners involved in desensitization. Several molecular determinants of these events are still not well understood. We hypothesized that the dynamics of these interactions are modulated by SGIP1. Using a panel of CB1Rs mutated in the aforementioned serine and threonine residues, together with an array of Bioluminescence energy transfer-based (BRET) sensors, we discovered that GRK3 forms complexes with Gßγ subunits of G proteins that largely independent of GRK3's interaction with CB1R. Furthermore, CB1R interacts only with activated GRK3. Interestingly, phosphorylation of two specific residues on CB1R triggers GRK3 dissociation from the desensitized receptor. SGIP1 increases the association of GRK3 with Gßγ subunits of G proteins, and with CB1R. Altogether, our data suggest that the CB1R signalosome complex is dynamically controlled by sequential phosphorylation of the receptor C-tail and is also modified by SGIP1.


Assuntos
Proteínas de Transporte , Proteínas de Ligação ao GTP , Proteínas de Transporte/metabolismo , Cinética , Fosforilação , Receptores de Canabinoides/metabolismo , Serina/metabolismo , Treonina/metabolismo
10.
Anal Chem ; 94(2): 1365-1372, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34928595

RESUMO

The discovery of new pain therapeutics targeting human nociceptive circuitry is an emerging, exciting, and rewarding field. However, current models for evaluating prospective new therapeutics [e.g., animals and two-dimensional (2D) in vitro cultures] fail to fully recapitulate the complexity of human nociceptive neuron and dorsal horn neuron biology, significantly limiting the development of novel pain therapeutics. Here, we report human spinal organoid-on-a-chip devices for modeling the biology and electrophysiology of human nociceptive neurons and dorsal horn interneurons in nociceptive circuitry. Our device can be simply made through the integration of a membrane with a three-dimensional (3D)-printed organoid holder. By combining air-liquid interface culture and spinal organoid protocols, our devices can differentiate human stem cells into human sensori-spinal-cord organoids with dorsal spinal cord interneurons and sensory neurons. By easily transferring from culture well plates to the multiple-electrode array (MEA) system, our device also allows the plug-and-play measurement of organoid activity for testing nociceptive modulators (e.g., mustard oil, capsaicin, velvet ant venom, etc.). Our organoid-on-a-chip devices are cost-efficient, scalable, easy to use, and compatible with conventional well plates, allowing the plug-and-play measurement of spinal organoid electrophysiology. By the integration of human sensory-spinal-cord organoids with our organoid-on-a-chip devices, our method may hold the promising potential to screen and validate novel therapeutics for human pain medicine discovery.


Assuntos
Dispositivos Lab-On-A-Chip , Organoides , Animais , Humanos , Nociceptividade , Dor/tratamento farmacológico , Estudos Prospectivos
11.
Pharmacol Res ; 185: 106474, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36179954

RESUMO

Blockade of cannabinoid type 1 (CB1)-receptor signaling decreases the rewarding properties of many drugs of abuse and has been proposed as an anti-addiction strategy. However, psychiatric side-effects limit the clinical potential of orthosteric CB1 antagonists. Negative allosteric modulators (NAMs) represent a novel and indirect approach to attenuate CB1 signaling by decreasing affinity and/or efficacy of CB1 ligands. We hypothesized that a CB1-NAM would block opioid reward while avoiding the unwanted effects of orthosteric CB1 antagonists. GAT358, a CB1-NAM, failed to elicit cardinal signs of direct CB1 activation or inactivation when administered by itself. GAT358 decreased catalepsy and hypothermia but not antinociception produced by the orthosteric CB1 agonist CP55,940, suggesting that a CB1-NAM blocked cardinal signs of CB1 activation. Next, GAT358 was evaluated using in vivo assays of opioid-induced dopamine release and reward in male rodents. In the nucleus accumbens shell, a key component of the mesocorticolimbic reward pathway, morphine increased electrically-evoked dopamine efflux and this effect was blocked by a dose of GAT358 that lacked intrinsic effects on evoked dopamine efflux. Moreover, GAT358 blocked morphine-induced reward in a conditioned place preference (CPP) assay without producing reward or aversion alone. GAT358-induced blockade of morphine CPP was also occluded by GAT229, a CB1 positive allosteric modulator (CB1-PAM), and absent in CB1-knockout mice. Finally, GAT358 also reduced oral oxycodone (but not water) consumption in a two-bottle choice paradigm. Our results support the therapeutic potential of CB1-NAMs as novel drug candidates aimed at preventing opioid reward and treating opioid abuse while avoiding unwanted side-effects.


Assuntos
Analgésicos Opioides , Dopamina , Camundongos , Animais , Masculino , Analgésicos Opioides/farmacologia , Recompensa , Morfina/farmacologia , Camundongos Knockout , Receptores de Canabinoides , Receptor CB1 de Canabinoide
13.
Molecules ; 27(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080421

RESUMO

In addition to phytocannabinoids, cannabis contains terpenoids that are claimed to have a myriad of effects on the body. We tested a panel of five common cannabis terpenoids, myrcene, linalool, limonene, α-pinene and nerolidol, in two neuronal models, autaptic hippocampal neurons and dorsal root ganglion (DRG) neurons. Autaptic neurons express a form of cannabinoid CB1 receptor-dependent retrograde plasticity while DRGs express a variety of transient receptor potential (TRP) channels. Most terpenoids had little or no effect on neuronal cannabinoid signaling. The exception was nerolidol, which inhibited endocannabinoid signaling. Notably, this is not via inhibition of CB1 receptors but by inhibiting some aspect of 2-arachidonoylglycerol (2-AG) production/delivery; the mechanism does not involve reducing the activity of the 2-AG-synthesizing diacylglycerol lipases (DAGLs). Nerolidol was also the only terpenoid that activated a sustained calcium response in a small (7%) subpopulation of DRGs. In summary, we found that only one of five terpenoids tested had notable effects on cannabinoid signaling in two neuronal models. Our results suggest that a few terpenoids may indeed interact with some components of the cannabinoid signaling system and may therefore offer interesting insights upon further study.


Assuntos
Canabinoides , Cannabis , Alucinógenos , Agonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Endocanabinoides/farmacologia , Alucinógenos/farmacologia , Hipocampo , Neurônios , Receptor CB1 de Canabinoide , Receptores de Canabinoides , Terpenos/farmacologia
14.
Mol Psychiatry ; 25(1): 22-36, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31735910

RESUMO

The evolution of human diets led to preferences toward polyunsaturated fatty acid (PUFA) content with 'Western' diets enriched in ω-6 PUFAs. Mounting evidence points to ω-6 PUFA excess limiting metabolic and cognitive processes that define longevity in humans. When chosen during pregnancy, ω-6 PUFA-enriched 'Western' diets can reprogram maternal bodily metabolism with maternal nutrient supply precipitating the body-wide imprinting of molecular and cellular adaptations at the level of long-range intercellular signaling networks in the unborn fetus. Even though unfavorable neurological outcomes are amongst the most common complications of intrauterine ω-6 PUFA excess, cellular underpinnings of life-long modifications to brain architecture remain unknown. Here, we show that nutritional ω-6 PUFA-derived endocannabinoids desensitize CB1 cannabinoid receptors, thus inducing epigenetic repression of transcriptional regulatory networks controlling neuronal differentiation. We found that cortical neurons lose their positional identity and axonal selectivity when mouse fetuses are exposed to excess ω-6 PUFAs in utero. Conversion of ω-6 PUFAs into endocannabinoids disrupted the temporal precision of signaling at neuronal CB1 cannabinoid receptors, chiefly deregulating Stat3-dependent transcriptional cascades otherwise required to execute neuronal differentiation programs. Global proteomics identified the immunoglobulin family of cell adhesion molecules (IgCAMs) as direct substrates, with DNA methylation and chromatin accessibility profiling uncovering epigenetic reprogramming at >1400 sites in neurons after prolonged cannabinoid exposure. We found anxiety and depression-like behavioral traits to manifest in adult offspring, which is consistent with genetic models of reduced IgCAM expression, to suggest causality for cortical wiring defects. Overall, our data uncover a regulatory mechanism whose disruption by maternal food choices could limit an offspring's brain function for life.


Assuntos
Encéfalo/efeitos dos fármacos , Dieta Ocidental/efeitos adversos , Epigênese Genética/efeitos dos fármacos , Animais , Ansiedade , Encéfalo/metabolismo , Metilação de DNA/efeitos dos fármacos , Depressão , Dieta , Suplementos Nutricionais , Endocanabinoides/metabolismo , Epigênese Genética/genética , Epigenômica/métodos , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Gravidez , Receptor CB1 de Canabinoide/efeitos dos fármacos
15.
Rapid Commun Mass Spectrom ; 35 Suppl 1: e8829, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32402102

RESUMO

RATIONALE: The developments of new ionization technologies based on processes previously unknown to mass spectrometry (MS) have gained significant momentum. Herein we address the importance of understanding these unique ionization processes, demonstrate the new capabilities currently unmet by other methods, and outline their considerable analytical potential. METHODS: The inlet and vacuum ionization methods of solvent-assisted ionization (SAI), matrix-assisted ionization (MAI), and laserspray ionization can be used with commercial and dedicated ion sources producing ions from atmospheric or vacuum conditions for analyses of a variety of materials including drugs, lipids, and proteins introduced from well plates, pipet tips and plate surfaces with and without a laser using solid or solvent matrices. Mass spectrometers from various vendors are employed. RESULTS: Results are presented highlighting strengths relative to ionization methods of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization. We demonstrate the utility of multi-ionization platforms encompassing MAI, SAI, and ESI and enabling detection of what otherwise is missed, especially when directly analyzing mixtures. Unmatched robustness is achieved with dedicated vacuum MAI sources with mechanical introduction of the sample to the sub-atmospheric pressure (vacuum MAI). Simplicity and use of a wide array of matrices are attained using a conduit (inlet ionization), preferably heated, with sample introduction from atmospheric pressure. Tissue, whole blood, urine (including mouse, chicken, and human origin), bacteria strains and chemical on-probe reactions are analyzed directly and, especially in the case of vacuum ionization, without concern of carryover or instrument contamination. CONCLUSIONS: Examples are provided highlighting the exceptional analytical capabilities associated with the novel ionization processes in MS that reduce operational complexity while increasing speed and robustness, achieving mass spectra with low background for improved sensitivity, suggesting the potential of this simple ionization technology to drive MS into areas currently underserved, such as clinical and medical applications.


Assuntos
Espectrometria de Massas , Animais , Bactérias/química , Desenho de Equipamento , Humanos , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Camundongos , Imagem Molecular/instrumentação , Imagem Molecular/métodos , Vácuo
16.
Proc Natl Acad Sci U S A ; 115(45): E10720-E10729, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348772

RESUMO

Adequate pain management remains an unmet medical need. We previously revealed an opioid-independent analgesic mechanism mediated by orexin 1 receptor (OX1R)-initiated 2-arachidonoylglycerol (2-AG) signaling in the ventrolateral periaqueductal gray (vlPAG). Here, we found that low-frequency median nerve stimulation (MNS) through acupuncture needles at the PC6 (Neiguan) acupoint (MNS-PC6) induced an antinociceptive effect that engaged this mechanism. In mice, MNS-PC6 reduced acute thermal nociceptive responses and neuropathy-induced mechanical allodynia, increased the number of c-Fos-immunoreactive hypothalamic orexin neurons, and led to higher orexin A and lower GABA levels in the vlPAG. Such responses were not seen in mice with PC6 needle insertion only or electrical stimulation of the lateral deltoid, a nonmedian nerve-innervated location. Directly stimulating the surgically exposed median nerve also increased vlPAG orexin A levels. MNS-PC6-induced antinociception (MNS-PC6-IA) was prevented by proximal block of the median nerve with lidocaine as well as by systemic or intravlPAG injection of an antagonist of OX1Rs or cannabinoid 1 receptors (CB1Rs) but not by opioid receptor antagonists. Systemic blockade of OX1Rs or CB1Rs also restored vlPAG GABA levels after MNS-PC6. A cannabinoid (2-AG)-dependent mechanism was also implicated by the observations that MNS-PC6-IA was prevented by intravlPAG inhibition of 2-AG synthesis and was attenuated in Cnr1-/- mice. These findings suggest that PC6-targeting low-frequency MNS activates hypothalamic orexin neurons, releasing orexins to induce analgesia through a CB1R-dependent cascade mediated by OX1R-initiated 2-AG retrograde disinhibition in the vlPAG. The opioid-independent characteristic of MNS-PC6-induced analgesia may provide a strategy for pain management in opioid-tolerant patients.


Assuntos
Analgesia , Endocanabinoides/metabolismo , Substância Cinzenta/metabolismo , Nervo Mediano/fisiologia , Orexinas/farmacologia , Animais , Humanos , Nervo Mediano/efeitos dos fármacos , Camundongos
17.
Molecules ; 26(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800024

RESUMO

The endocannabinoid system (ECS) is involved in the modulation of several basic biological processes, having widespread roles in neurodevelopment, neuromodulation, immune response, energy homeostasis and reproduction. In the adult central nervous system (CNS) the ECS mainly modulates neurotransmitter release, however, a substantial body of evidence has revealed a central role in regulating neurogenesis in developing and adult CNS, also under pathological conditions. Due to the complexity of investigating ECS functions in neural progenitors in vivo, we tested the suitability of the ST14A striatal neural progenitor cell line as a simplified in vitro model to dissect the role and the mechanisms of ECS-regulated neurogenesis, as well as to perform ECS-targeted pharmacological approaches. We report that ST14A cells express various ECS components, supporting the presence of an active ECS. While CB1 and CB2 receptor blockade did not affect ST14A cell number, exogenous administration of the endocannabinoid 2-AG and the synthetic CB2 agonist JWH133 increased ST14A cell proliferation. Phospholipase C (PLC), but not PI3K pharmacological blockade negatively modulated CB2-induced ST14A cell proliferation, suggesting that a PLC pathway is involved in the steps downstream to CB2 activation. On the basis of our results, we propose ST14A neural progenitor cells as a useful in vitro model for studying ECS modulation of neurogenesis, also in prospective in vivo pharmacological studies.


Assuntos
Moduladores de Receptores de Canabinoides/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/fisiologia , Receptores de Canabinoides/metabolismo , Animais , Canabinoides/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Corpo Estriado/citologia , Estrenos/farmacologia , Células-Tronco Neurais/fisiologia , Neurogênese/efeitos dos fármacos , Pirrolidinonas/farmacologia , Ratos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/genética , Receptores de Canabinoides/genética , Fosfolipases Tipo C/antagonistas & inibidores
18.
Molecules ; 26(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500785

RESUMO

Cannabis contains more than 100 phytocannabinoids. Most of these remain poorly characterized, particularly in neurons. We tested a panel of five phytocannabinoids-cannabichromene (CBC), cannabidiolic acid (CBDA), cannabidivarin (CBDV), cannabidivarinic acid (CBDVA), and Δ9-tetrahydrocannabivarin (THCV) in two neuronal models, autaptic hippocampal neurons and dorsal root ganglion (DRG) neurons. Autaptic neurons expressed a form of CB1-dependent retrograde plasticity while DRGs expressed a variety of transient receptor potential (TRP) channels. CBC, CBDA, and CBDVA had little or no effect on neuronal cannabinoid signaling. CBDV and THCV differentially inhibited cannabinoid signaling. THCV inhibited CB1 receptors presynaptically while CBDV acted post-synaptically, perhaps by inhibiting 2-AG production. None of the compounds elicited a consistent DRG response. In summary, we find that two of five 'minor' phytocannabinoids tested antagonized CB1-based signaling in a neuronal model, but with very different mechanisms. Our findings highlight the diversity of potential actions of phytocannabinoids and the importance of fully evaluating these compounds in neuronal models.


Assuntos
Canabinoides/farmacologia , Modelos Biológicos , Neurônios/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Canabinoides/química , Células Cultivadas , Humanos , Camundongos , Neurônios/metabolismo , Compostos Fitoquímicos/química
19.
Anal Chem ; 92(6): 4630-4638, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32070103

RESUMO

Prenatal cannabis exposure (PCE) influences human brain development, but it is challenging to model PCE using animals and current cell culture techniques. Here, we developed a one-stop microfluidic platform to assemble and culture human cerebral organoids from human embryonic stem cells (hESC) to investigate the effect of PCE on early human brain development. By incorporating perfusable culture chambers, air-liquid interface, and one-stop protocol, this microfluidic platform can simplify the fabrication procedure and produce a large number of organoids (169 organoids per 3.5 cm × 3.5 cm device area) without fusion, as compared with conventional fabrication methods. These one-stop microfluidic assembled cerebral organoids not only recapitulate early human brain structure, biology, and electrophysiology but also have minimal size variation and hypoxia. Under on-chip exposure to the psychoactive cannabinoid, Δ-9-tetrahydrocannabinol (THC), cerebral organoids exhibited reduced neuronal maturation, downregulation of cannabinoid receptor type 1 (CB1) receptors, and impaired neurite outgrowth. Moreover, transient on-chip THC treatment also decreased spontaneous firing in these organoids. This one-stop microfluidic technique enables a simple, scalable, and repeatable organoid culture method that can be used not only for human brain organoids but also for many other human organoids including liver, kidney, retina, and tumor organoids. This technology could be widely used in modeling brain and other organ development, developmental disorders, developmental pharmacology and toxicology, and drug screening.


Assuntos
Encéfalo/efeitos dos fármacos , Cannabis/efeitos adversos , Dispositivos Lab-On-A-Chip , Modelos Biológicos , Organoides/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Células Cultivadas , Eletrodos , Células-Tronco Embrionárias/efeitos dos fármacos , Feminino , Humanos , Hipóxia/diagnóstico por imagem , Organoides/diagnóstico por imagem , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
20.
Int J Mol Sci ; 21(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212822

RESUMO

Cannabinoid type 1 receptor (CB1R) is expressed and participates in several aspects of cerebral cortex embryonic development as demonstrated with whole-transcriptome mRNA sequencing and other contemporary methods. However, the cellular location of CB1R, which helps to specify molecular mechanisms, remains to be documented. Using three-dimensional (3D) electron microscopic reconstruction, we examined CB1R immunolabeling in proliferating neural stem cells (NSCs) and migrating neurons in the embryonic mouse (Mus musculus) and rhesus macaque (Macaca mulatta) cerebral cortex. We found that the mitotic and postmitotic ventricular and subventricular zone (VZ and SVZ) cells are immunonegative in both species while radially migrating neurons in the intermediate zone (IZ) and cortical plate (CP) contain CB1R-positive intracellular vesicles. CB1R immunolabeling was more numerous and more extensive in monkeys compared to mice. In CB1R-knock out mice, projection neurons in the IZ show migration abnormalities such as an increased number of lateral processes. Thus, in radially migrating neurons CB1R provides a molecular substrate for the regulation of cell movement. Undetectable level of CB1R in VZ/SVZ cells indicates that previously suggested direct CB1R-transmitted regulation of cellular proliferation and fate determination demands rigorous re-examination. More abundant CB1R expression in monkey compared to mouse suggests that therapeutic or recreational cannabis use may be more distressing for immature primate neurons than inferred from experiments with rodents.


Assuntos
Movimento Celular , Proliferação de Células , Células-Tronco Neurais/metabolismo , Neurogênese , Neurônios/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Macaca mulatta , Camundongos , Camundongos Knockout , Células-Tronco Neurais/citologia , Neurônios/citologia , Receptor CB1 de Canabinoide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA