Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pediatr Endocrinol Metab ; 33(1): 147-155, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31846426

RESUMO

Background The dietary management of methylmalonic acidaemia (MMA) is a low-protein diet providing sufficient energy to avoid catabolism and to limit production of methylmalonic acid. The goal is to achieve normal growth, good nutritional status and the maintenance of metabolic stability. Aim To describe the dietary management of patients with MMA across Europe. Methods A cross-sectional questionnaire was sent to European colleagues managing inherited metabolic disorders (IMDs) (n=53) with 27 questions about the nutritional management of organic acidaemias. Data were analysed by different age ranges (0-6 months; 7-12 months; 1-10 years; 11-16 years; >16 years). Results Questionnaires were returned from 53 centres. Twenty-five centres cared for 80 patients with MMA vitamin B12 responsive (MMAB12r) and 43 centres managed 215 patients with MMA vitamin B12 non-responsive (MMAB12nr). For MMAB12r patients, 44% of centres (n=11/25) prescribed natural protein below the World Health Organization/Food and Agriculture Organization/United Nations University (WHO/FAO/UNU) 2007 safe levels of protein intake in at least one age range. Precursor-free amino acids (PFAA) were prescribed by 40% of centres (10/25) caring for 36% (29/80) of all the patients. For MMAB12nr patients, 72% of centres (n=31/43) prescribed natural protein below the safe levels of protein intake (WHO/FAO/UNU 2007) in at least one age range. PFAA were prescribed by 77% of centres (n=33/43) managing 81% (n=174/215) of patients. In MMAB12nr patients, 90 (42%) required tube feeding: 25 via a nasogastric tube and 65 via a gastrostomy. Conclusions A high percentage of centres used PFAA in MMA patients together with a protein prescription that provided less than the safe levels of natural protein intake. However, there was inconsistent practices across Europe. Long-term efficacy studies are needed to study patient outcome when using PFAA with different severities of natural protein restrictions in patients with MMA to guide future practice.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/dietoterapia , Proteínas Alimentares/administração & dosagem , Inquéritos e Questionários/normas , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Europa (Continente)/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Apoio Nutricional
2.
Mol Genet Metab Rep ; 5: 36-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28649540

RESUMO

BACKGROUND: A phenylalanine (Phe) restricted dietary management is required in phenylketonuria (PKU) to maintain good metabolic control. Nevertheless, five different models of dietary regimes, which differ in their accuracy of Phe documentation, are used. To investigate the effect of the dietary regime on metabolic control, a multicenter evaluation was performed. PATIENTS/METHODS: 149 patients (max. 800 mg Phe-intake/day; 108 children aged 1-9 years and 41 adolescents aged 10-15 years) could be included. They were separated according to age and dietary regime, revealed by a questionnaire on dietary habits. Dietary regimes vary from daily strict calculation of all Phe-intake (group 1) to a rather loose regime only estimating Phe-intake and including high protein food (group 5). Data were analyzed with respect to metabolic control (Phe-concentrations, Phe-concentrations above upper recommended limit during 6 months before the interview), Phe-intake (mg/day) and age (years). RESULTS: Median Phe-concentrations in children did not differ significantly among diet groups (group 1: 161; 2: 229, 3: 236, 4: 249, 5: 288 µmol/l, p = 0.175). However, exact daily Phe calculation led to significantly lower percentage of Phe concentrations above the upper recommended limit (group 1: 17, 2: 50, 3: 42, 4: 50, 5: 75%, p = 0.035). All included patients showed good to acceptable metabolic control. Patients on the dietary regime with the least accuracy, consuming also high protein foods, showed the poorest metabolic control. Median Phe concentrations of all other groups remained within recommended ranges, including from groups not calculating special low protein foods, fruit and vegetables and using a simplified system of recording Phe-intake. In adolescents no significant differences among diet groups were revealed. CONCLUSION: Exact calculation of Phe content of all food is not necessary to achieve good metabolic control in children and adolescents with PKU. Excluding special low protein food, as well as fruit and vegetables from calculation of Phe-intake has no impact on metabolic control. However including protein rich food into the diet and simply estimating all Phe-intake appears insufficient. The simplification of dietary regime may be helpful in enhancing acceptability and feasibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA