Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Transplant ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38527588

RESUMO

The first-generation Molecular Microscope (MMDx) system for heart transplant endomyocardial biopsies used expression of rejection-associated transcripts (RATs) to diagnose not only T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR) but also acute injury. However, the ideal system should detect rejection without being influenced by injury, to permit analysis of the relationship between rejection and parenchymal injury. To achieve this, we developed a new rejection classification in an expanded cohort of 3230 biopsies: 1641 from INTERHEART (ClinicalTrials.gov NCT02670408), plus 1589 service biopsies added to improve the power of the machine learning algorithms. The new system used 6 rejection classifiers instead of RATs and generated 7 rejection archetypes: No rejection, 48%; Minor, 24%; TCMR1, 2.3%; TCMR2, 2.7%; TCMR/mixed, 2.7%; early-stage ABMR, 3.9%; and fully developed ABMR, 16%. Using rejection classifiers eliminated cross-reactions with acute injury, permitting separate assessment of rejection and injury. TCMR was associated with severe-recent injury and late atrophy-fibrosis and rarely had normal parenchyma. ABMR was better tolerated, seldom producing severe injury, but in later biopsies was often associated with atrophy-fibrosis, indicating long-term risk. Graft survival and left ventricular ejection fraction were reduced not only in hearts with TCMR but also in hearts with severe-recent injury and atrophy-fibrosis, even without rejection.

2.
Clin Sci (Lond) ; 138(11): 663-685, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38819301

RESUMO

There is a major unmet need for improved accuracy and precision in the assessment of transplant rejection and tissue injury. Diagnoses relying on histologic and visual assessments demonstrate significant variation between expert observers (as represented by low kappa values) and have limited ability to assess many biological processes that produce little histologic changes, for example, acute injury. Consensus rules and guidelines for histologic diagnosis are useful but may have errors. Risks of over- or under-treatment can be serious: many therapies for transplant rejection or primary diseases are expensive and carry risk for significant adverse effects. Improved diagnostic methods could alleviate healthcare costs by reducing treatment errors, increase treatment efficacy, and serve as useful endpoints for clinical trials of new agents that can improve outcomes. Molecular diagnostic assessments using microarrays combined with machine learning algorithms for interpretation have shown promise for increasing diagnostic precision via probabilistic assessments, recalibrating standard of care diagnostic methods, clarifying ambiguous cases, and identifying potentially missed cases of rejection. This review describes the development and application of the Molecular Microscope® Diagnostic System (MMDx), and discusses the history and reasoning behind many common methods, statistical practices, and computational decisions employed to ensure that MMDx scores are as accurate and precise as possible. MMDx provides insights on disease processes and highly reproducible results from a comparatively small amount of tissue and constitutes a general approach that is useful in many areas of medicine, including kidney, heart, lung, and liver transplants, with the possibility of extrapolating lessons for understanding native organ disease states.


Assuntos
Rejeição de Enxerto , Transplante de Órgãos , Humanos , Rejeição de Enxerto/diagnóstico , Análise de Sequência com Séries de Oligonucleotídeos , Perfilação da Expressão Gênica/métodos , Medicina de Precisão/métodos , Aprendizado de Máquina , Reprodutibilidade dos Testes
3.
J Am Soc Nephrol ; 33(2): 387-400, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35058354

RESUMO

BACKGROUND: The relationship between the donor-derived cell-free DNA fraction (dd-cfDNA[%]) in plasma in kidney transplant recipients at time of indication biopsy and gene expression in the biopsied allograft has not been defined. METHODS: In the prospective, multicenter Trifecta study, we collected tissue from 300 biopsies from 289 kidney transplant recipients to compare genome-wide gene expression in biopsies with dd-cfDNA(%) in corresponding plasma samples drawn just before biopsy. Rejection was assessed with the microarray-based Molecular Microscope Diagnostic System using automatically assigned rejection archetypes and molecular report sign-outs, and histology assessments that followed Banff guidelines. RESULTS: The median time of biopsy post-transplantation was 455 days (5 days to 32 years), with a case mix similar to that of previous studies: 180 (60%) no rejection, 89 (30%) antibody-mediated rejection (ABMR), and 31 (10%) T cell-mediated rejection (TCMR) and mixed. In genome-wide mRNA measurements, all 20 top probe sets correlating with dd-cfDNA(%) were previously annotated for association with ABMR and all types of rejection, either natural killer (NK) cell-expressed (e.g., GNLY, CCL4, TRDC, and S1PR5) or IFN-γ-inducible (e.g., PLA1A, IDO1, CXCL11, and WARS). Among gene set and classifier scores, dd-cfDNA(%) correlated very strongly with ABMR and all types of rejection, reasonably strongly with active TCMR, and weakly with inactive TCMR, kidney injury, and atrophy fibrosis. Active ABMR, mixed, and active TCMR had the highest dd-cfDNA(%), whereas dd-cfDNA(%) was lower in late-stage ABMR and less-active TCMR. By multivariate random forests and logistic regression, molecular rejection variables predicted dd-cfDNA(%) better than histologic variables. CONCLUSIONS: The dd-cfDNA(%) at time of indication biopsy strongly correlates with active molecular rejection and has the potential to reduce unnecessary biopsies. CLINICAL TRIAL REGISTRATION NUMBER: NCT04239703.


Assuntos
Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Rejeição de Enxerto/sangue , Rejeição de Enxerto/genética , Transplante de Rim , Doadores de Tecidos , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Biópsia , Feminino , Expressão Gênica , Rejeição de Enxerto/imunologia , Humanos , Transplante de Rim/efeitos adversos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Fenótipo , Análise de Componente Principal , Estudos Prospectivos
4.
Am J Transplant ; 22(8): 1976-1991, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35575435

RESUMO

We studied the clinical, histologic, and molecular features distinguishing DSA-negative from DSA-positive molecularly defined antibody-mediated rejection (mABMR). We analyzed mABMR biopsies with available DSA assessments from the INTERCOMEX study: 148 DSA-negative versus 248 DSA-positive, compared with 864 no rejection (excluding TCMR and Mixed). DSA-positivity varied with mABMR stage: early-stage (EABMR) 56%; fully developed (FABMR) 70%; and late-stage (LABMR) 58%. DSA-negative patients with mABMR were usually sensitized, 60% being HLA antibody-positive. Compared with DSA-positive mABMR, DSA-negative mABMR was more often C4d-negative; earlier by 1.5 years (average 2.4 vs. 3.9 years); and had lower ABMR activity and earlier stage in molecular and histology features. However, the top ABMR-associated transcripts were identical in DSA-negative versus DSA-positive mABMR, for example, NK-associated (e.g., KLRD1 and GZMB) and IFNG-inducible (e.g., PLA1A). Genome-wide class comparison between DSA-negative and DSA-positive mABMR showed no significant differences in transcript expression except those related to lower intensity and earlier time of DSA-negative ABMR. Three-year graft loss in DSA-negative mABMR was the same as DSA-positive mABMR, even after adjusting for ABMR stage. Thus, compared with DSA-positive mABMR, DSA-negative mABMR is on average earlier, less active, and more often C4d-negative but has similar graft loss, and genome-wide analysis suggests that it involves the same mechanisms. SUMMARY SENTENCE: In 398 kidney transplant biopsies with molecular antibody-mediated rejection, the 150 DSA-negative cases are earlier, less intense, and mostly C4d-negative, but use identical molecular mechanisms and have the same risk of graft loss as the 248 DSA-positive cases.


Assuntos
Transplante de Rim , Anticorpos , Biópsia , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/etiologia , Humanos , Isoanticorpos , Transplante de Rim/efeitos adversos , Doadores de Tecidos
5.
Am J Transplant ; 22(3): 909-926, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34780106

RESUMO

To extend previous molecular analyses of rejection in liver transplant biopsies in the INTERLIVER study (ClinicalTrials.gov #NCT03193151), the present study aimed to define the gene expression selective for parenchymal injury, fibrosis, and steatohepatitis. We analyzed genome-wide microarray measurements from 337 liver transplant biopsies from 13 centers. We examined expression of genes previously annotated as increased in injury and fibrosis using principal component analysis (PCA). PC1 reflected parenchymal injury and related inflammation in the early posttransplant period, slowly regressing over many months. PC2 separated early injury from late fibrosis. Positive PC3 identified a distinct mildly inflamed state correlating with histologic steatohepatitis. Injury PCs correlated with liver function and histologic abnormalities. A classifier trained on histologic steatohepatitis predicted histologic steatohepatitis with cross-validated AUC = 0.83, and was associated with pathways reflecting metabolic abnormalities distinct from fibrosis. PC2 predicted histologic fibrosis (AUC = 0.80), as did a molecular fibrosis classifier (AUC = 0.74). The fibrosis classifier correlated with matrix remodeling pathways with minimal overlap with those selective for steatohepatitis, although some biopsies had both. Genome-wide assessment of liver transplant biopsies can not only detect molecular changes induced by rejection but also those correlating with parenchymal injury, steatohepatitis, and fibrosis, offering potential insights into disease mechanisms for primary diseases.


Assuntos
Transplante de Fígado , Fígado , Biópsia , Fígado Gorduroso , Fibrose , Rejeição de Enxerto , Humanos , Fígado/patologia , Transplante de Fígado/efeitos adversos , Fenótipo
6.
Handb Exp Pharmacol ; 272: 1-26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35091823

RESUMO

Allograft rejection is defined as tissue injury in a transplanted allogeneic organ produced by the effector mechanisms of the adaptive alloimmune response. Effector T lymphocytes and IgG alloantibodies cause two different types of rejection that can occur either individually or simultaneously: T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR). In TCMR, cognate effector T cells infiltrate the graft and orchestrate an interstitial inflammatory response in the kidney interstitium in which effector T cells engage antigen-presenting myeloid cells, activating the T cells, antigen-presenting cells, and macrophages. The result is intense expression of IFNG and IFNG-induced molecules, expression of effector T cell molecules and macrophage molecules and checkpoints, and deterioration of parenchymal function. The diagnostic lesions of TCMR follow, i.e. interstitial inflammation, parenchymal deterioration, and intimal arteritis. In ABMR, HLA IgG alloantibodies produced by plasma cells bind to the donor antigens on graft microcirculation, leading to complement activation, margination, and activation of NK cells and neutrophils and monocytes, and endothelial injury, sometimes with intimal arteritis. TCMR becomes infrequent after 5-10 years post-transplant, probably reflecting adaptive mechanisms such as checkpoints, but ABMR can present even decades post-transplant. Some rejection is triggered by inadequate immunosuppression and non-adherence, challenging the clinician to target effective immunosuppression even decades post-transplant.


Assuntos
Arterite , Transplante de Rim , Biologia , Rejeição de Enxerto , Humanos , Imunoglobulina G , Isoanticorpos , Transplante de Rim/efeitos adversos
7.
J Am Soc Nephrol ; 32(11): 2743-2758, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34253587

RESUMO

BACKGROUND: Donor -specific HLA antibody (DSA) is present in many kidney transplant patients whose biopsies are classified as no rejection (NR). We explored whether in some NR kidneys DSA has subtle effects not currently being recognized. METHODS: We used microarrays to examine the relationship between standard-of-care DSA and rejection-related transcript increases in 1679 kidney transplant indication biopsies in the INTERCOMEX study (ClinicalTrials.gov NCT01299168), focusing on biopsies classified as NR by automatically assigned archetypal clustering. DSA testing results were available for 835 NR biopsies and were positive in 271 (32%). RESULTS: DSA positivity in NR biopsies was associated with mildly increased expression of antibody-mediated rejection (ABMR)-related transcripts, particularly IFNG-inducible and NK cell transcripts. We developed a machine learning DSA probability (DSAProb) classifier based on transcript expression in biopsies from DSA-positive versus DSA-negative patients, assigning scores using 10-fold cross-validation. This DSAProb classifier was very similar to a previously described "ABMR probability" classifier trained on histologic ABMR in transcript associations and prediction of molecular or histologic ABMR. Plotting the biopsies using Uniform Manifold Approximation and Projection revealed a gradient of increasing molecular ABMR-like transcript expression in NR biopsies, associated with increased DSA (P<2 × 10-16). In biopsies with no molecular or histologic rejection, increased DSAProb or ABMR probability scores were associated with increased risk of kidney failure over 3 years. CONCLUSIONS: Many biopsies currently considered to have no molecular or histologic rejection have mild increases in expression of ABMR-related transcripts, associated with increasing frequency of DSA. Thus, mild molecular ABMR-related pathology is more common than previously realized.


Assuntos
Rejeição de Enxerto/genética , Antígenos HLA/imunologia , Isoanticorpos/imunologia , Transplante de Rim , Rim/patologia , Doadores de Tecidos , Transplantes/patologia , Especificidade de Anticorpos , Biópsia , Reações Falso-Negativas , Expressão Gênica , Sobrevivência de Enxerto , Análise de Componente Principal , Estudos Prospectivos , Análise de Sobrevida , Análise Serial de Tecidos , Transcrição Gênica
8.
Am J Transplant ; 21(5): 1725-1739, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33107191

RESUMO

We previously characterized the molecular changes in acute kidney injury (AKI) and chronic kidney disease (CKD) in kidney transplant biopsies, but parenchymal changes selective for specific types of injury could be missed by such analyses. The present study searched for injury changes beyond AKI and CKD related to specific scenarios, including correlations with donor age. We defined injury using previously defined gene sets and classifiers and used principal component analysis to discover new injury dimensions. As expected, Dimension 1 distinguished normal vs. injury, and Dimension 2 separated early AKI from late CKD, correlating with time posttransplant. However, Dimension 3 was novel, distinguishing a set of genes related to epithelial polarity (e.g., PARD3) that were increased in early AKI and decreased in T cell-mediated rejection (TCMR) but not in antibody-mediated rejection. Dimension 3 was increased in kidneys from older donors and was particularly important in survival of early kidneys. Thus high Dimension 3 scores emerge as a previously unknown element in the kidney response-to-injury that affects epithelial polarity genes and is increased in AKI but depressed in TCMR, indicating that in addition to general injury elements, certain injury elements are selective for specific pathologic mechanisms. (ClinicalTrials.gov NCT01299168).


Assuntos
Transplante de Rim , Biópsia , Rejeição de Enxerto/etiologia , Rim , Transplante de Rim/efeitos adversos , Linfócitos T
9.
Transpl Int ; 34(5): 974-985, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33650206

RESUMO

The tubulitis with/without interstitial inflammation not meeting criteria for T-cell-mediated rejection (minimal allograft injury) is the most frequent histological findings in early transplant biopsies. The course of transcriptional changes in sequential kidney graft biopsies has not been studied yet. Molecular phenotypes were analyzed using the Molecular Microscope® Diagnostic System (MMDx) in 46 indication biopsies (median 13 postoperative days) diagnosed as minimal allograft injury and in corresponding follow-up biopsies at 3 months. All 46 patients with minimal injury in early biopsy received steroid pulses. MMDx interpreted indication biopsies as no-rejection in 34/46 (74%), T-cell-mediated rejection (TCMR) in 4/46 (9%), antibody-mediated rejection in 6/46 (13%), and mixed rejection in 2/46 (4%) cases. Follow-up biopsies were interpreted by MMDx in 37/46 (80%) cases as no-rejection, in 4/46 (9%) as TCMR, and in 5/46 (11%) as mixed rejection. Follow-up biopsies showed a decrease in MMDx-assessed acute kidney injury (P = 0.001) and an increase of atrophy-fibrosis (P = 0.002). The most significant predictor of MMDx rejection scores in follow-up biopsies was the tubulitis classifier score in initial biopsies (AUC = 0.84, P = 0.002), confirmed in multivariate binary regression (OR = 16, P = 0.016). Molecular tubulitis score at initial biopsy has the potential to discriminate patients at risk for molecular rejection score at follow-up biopsy.


Assuntos
Rejeição de Enxerto , Transplante de Rim , Aloenxertos , Biópsia , Estudos de Coortes , Humanos , Rim , Transplante de Rim/efeitos adversos
10.
Am J Transplant ; 20(5): 1341-1350, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31846554

RESUMO

Discrepancy analysis comparing two diagnostic platforms offers potential insights into both without assuming either is always correct. Having optimized the Molecular Microscope Diagnostic System (MMDx) in renal transplant biopsies, we studied discrepancies within MMDx (reports and sign-out comments) and between MMDx and histology. Interpathologist discrepancies have been documented previously and were not assessed. Discrepancy cases were classified as "clear" (eg, antibody-mediated rejection [ABMR] vs T cell-mediated rejection [TCMR]), "boundary" (eg, ABMR vs possible ABMR), or "mixed" (eg, Mixed vs ABMR). MMDx report scores showed 99% correlations; sign-out interpretations showed 7% variation between observers, all located around boundaries. Histology disagreed with MMDx in 37% of biopsies, including 315 clear discrepancies, all with implications for therapy. Discrepancies were distributed widely in all histology diagnoses but increased in some scenarios; for example, histology TCMR contained 14% MMDx ABMR and 20% MMDx no rejection. MMDx usually gave unambiguous diagnoses in cases with ambiguous histology, for example, borderline and transplant glomerulopathy. Histology lesions or features associated with more frequent discrepancies (eg, tubulitis, arteritis, and polyomavirus nephropathy) were not associated with increased MMDx uncertainty, indicating that MMDx can clarify biopsies with histologic ambiguity. The patterns of histology-MMDx discrepancies highlight specific histology diagnoses in which MMDx assessment should be considered for guiding therapy.


Assuntos
Transplante de Rim , Anticorpos , Biópsia , Rejeição de Enxerto/diagnóstico , Transplante de Rim/efeitos adversos , Prognóstico
11.
Am J Transplant ; 20(8): 2156-2172, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32090446

RESUMO

Molecular diagnosis of rejection is emerging in kidney, heart, and lung transplant biopsies and could offer insights for liver transplant biopsies. We measured gene expression by microarrays in 235 liver transplant biopsies from 10 centers. Unsupervised archetypal analysis based on expression of previously annotated rejection-related transcripts identified 4 groups: normal "R1normal " (N = 129), T cell-mediated rejection (TCMR) "R2TCMR " (N = 37), early injury "R3injury " (N = 61), and fibrosis "R4late " (N = 8). Groups differed in median time posttransplant, for example, R3injury 99 days vs R4late 3117 days. R2TCMR biopsies expressed typical TCMR-related transcripts, for example, intense IFNG-induced effects. R3injury displayed increased expression of parenchymal injury transcripts (eg, hypoxia-inducible factor EGLN1). R4late biopsies showed immunoglobulin transcripts and injury-related transcripts. R2TCMR correlated with histologic rejection although with many discrepancies, and R4late with fibrosis. R2TCMR , R3injury , and R4late correlated with liver function abnormalities. Supervised classifiers trained on histologic rejection showed less agreement with histology than unsupervised R2TCMR scores. No confirmed cases of clinical antibody-mediated rejection (ABMR) were present in the population, and strategies that previously revealed ABMR in kidney and heart transplants failed to reveal a liver ABMR phenotype. In conclusion, molecular analysis of liver transplant biopsies detects rejection, has the potential to resolve ambiguities, and could assist with immunosuppressive management.


Assuntos
Transplante de Coração , Transplante de Rim , Transplante de Fígado , Biópsia , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/genética , Transplante de Fígado/efeitos adversos
12.
Am J Transplant ; 19(10): 2719-2731, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30868758

RESUMO

We previously reported a system for assessing rejection in kidney transplant biopsies using microarray-based gene expression data, the Molecular Microscope® Diagnostic System (MMDx). The present study was designed to optimize the accuracy and stability of MMDx diagnoses by replacing single machine learning classifiers with ensembles of diverse classifier methods. We also examined the use of automated report sign-outs and the agreement between multiple human interpreters of the molecular results. Ensembles generated diagnoses that were both more accurate than the best individual classifiers, and nearly as stable as the best, consistent with expectations from the machine learning literature. Human experts had ≈93% agreement (balanced accuracy) signing out the reports, and random forest-based automated sign-outs showed similar levels of agreement with the human experts (92% and 94% for predicting the expert MMDx sign-outs for T cell-mediated (TCMR) and antibody-mediated rejection (ABMR), respectively). In most cases disagreements, whether between experts or between experts and automated sign-outs, were in biopsies near diagnostic thresholds. Considerable disagreement with histology persisted. The balanced accuracies of MMDx sign-outs for histology diagnoses of TCMR and ABMR were 73% and 78%, respectively. Disagreement with histology is largely due to the known noise in histology assessments (ClinicalTrials.gov NCT01299168).


Assuntos
Perfilação da Expressão Gênica , Rejeição de Enxerto/classificação , Rejeição de Enxerto/diagnóstico , Isoanticorpos/efeitos adversos , Falência Renal Crônica/cirurgia , Transplante de Rim/efeitos adversos , Aprendizado de Máquina , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Automação , Criança , Estudos de Coortes , Feminino , Seguimentos , Rejeição de Enxerto/etiologia , Humanos , Falência Renal Crônica/genética , Falência Renal Crônica/imunologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Linfócitos T/imunologia , Adulto Jovem
13.
Am J Transplant ; 19(5): 1356-1370, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30417539

RESUMO

In kidney transplant biopsies, inflammation in areas of atrophy-fibrosis (i-IFTA) is associated with increased risk of failure, presumably because inflammation is evoked by recent parenchymal injury from rejection or other insults, but some cases also have rejection. The present study explored the frequency of rejection in i-IFTA, by using histology Banff 2015 and a microarray-based molecular diagnostic system (MMDx). In unselected indication biopsies (108 i-IFTA, 73 uninflamed IFTA [i0-IFTA], and 53 no IFTA), i-IFTA biopsies occurred later, showed more scarring, and had more antibody-mediated rejection (ABMR) based on histology (28%) and MMDx (45%). T cell-mediated rejection (TCMR) was infrequent in i-IFTA based on histology (8%) and MMDx (16%). Twelve i-IFTA biopsies (11%) had molecular TCMR not diagnosed by histology, although 6 were called borderline and almost all had histologic TCMR lesions. The prominent feature of i-IFTA biopsies was molecular injury (eg, acute kidney injury [AKI] transcripts). In multivariate analysis of biopsies >1 year posttransplant, the strongest associations with graft loss were AKI transcripts and histologic atrophy-scarring; i-IFTA was not significant when molecular AKI was included. We conclude that i-IFTA in indication biopsies reflects recent/ongoing parenchymal injury, often with concomitant ABMR but few with TCMR. Thus, the application of Banff i-IFTA in the population of late biopsies needs to be reconsidered.


Assuntos
Biópsia/métodos , Cicatriz/fisiopatologia , Inflamação/fisiopatologia , Transplante de Rim/métodos , Adolescente , Adulto , Idoso , Atrofia , Feminino , Fibrose/fisiopatologia , Rejeição de Enxerto , Sobrevivência de Enxerto , Humanos , Rim/patologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Estudos Prospectivos , Risco , Linfócitos T/citologia , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
14.
Am J Transplant ; 18(4): 785-795, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29178397

RESUMO

The molecular mechanisms operating in human organ transplant rejection are best inferred from the mRNAs expressed in biopsies because the corresponding proteins often have low expression and short half-lives, while small non-coding RNAs lack specificity. Associations should be characterized in a population that rigorously identifies T cell-mediated (TCMR) and antibody-mediated rejection (ABMR). This is best achieved in kidney transplant biopsies, but the results are generalizable to heart, lung, or liver transplants. Associations can be universal (all rejection), TCMR-selective, or ABMR-selective, with universal being strongest and ABMR-selective weakest. Top universal transcripts are IFNG-inducible (eg, CXCL11 IDO1, WARS) or shared by effector T cells (ETCs) and NK cells (eg, KLRD1, CCL4). TCMR-selective transcripts are expressed in activated ETCs (eg, CTLA4, IFNG), activated (eg, ADAMDEC1), or IFNG-induced macrophages (eg, ANKRD22). ABMR-selective transcripts are expressed in NK cells (eg, FGFBP2, GNLY) and endothelial cells (eg, ROBO4, DARC). Transcript associations are highly reproducible between biopsy sets when the same rejection definitions, case mix, algorithm, and technology are applied, but exact ranks will vary. Previously published rejection-associated transcripts resemble universal and TCMR-selective transcripts due to incomplete representation of ABMR. Rejection-associated transcripts are never completely rejection-specific because they are shared with the stereotyped response-to-injury and innate immunity.


Assuntos
Biomarcadores/análise , Rejeição de Enxerto/diagnóstico , Células Matadoras Naturais/metabolismo , Transplante de Órgãos/efeitos adversos , Linfócitos T/metabolismo , Transcriptoma , Aloenxertos , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/genética , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
17.
Transplantation ; 108(1): 45-71, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310258

RESUMO

This review outlines the molecular disease states in kidney transplant biopsies as documented in the development of the Molecular Microscope Diagnostic System (MMDx). These states include T cell-mediated rejection (TCMR), antibody-mediated rejection (AMR), recent parenchymal injury, and irreversible atrophy-fibrosis. The MMDx project, initiated through a Genome Canada grant, is a collaboration involving many centers. MMDx uses genome-wide microarrays to measure transcript expression, interprets the results using ensembles of machine learning algorithms, and generates a report. Experimental studies in mouse models and cell lines were extensively used to annotate molecular features and interpret the biopsy results. Over time, MMDx revealed unexpected aspects of the disease states: for example, AMR is usually C4d-negative and often DSA-negative, and subtle "Minor" AMR-like states are frequent. Parenchymal injury correlates with both reduced glomerular filtration rate and increased risk of graft loss. In kidneys with rejection, injury features, not rejection activity, are the strongest predictors of graft survival. Both TCMR and AMR produce injury, but TCMR induces immediate nephron injury and accelerates atrophy-fibrosis, whereas AMR induces microcirculation and glomerular damage that slowly leads to nephron failure and atrophy-fibrosis. Plasma donor-derived cell-free DNA levels correlate strongly with AMR activity, acute kidney injury, and in a complex way with TCMR activity. Thus, the MMDx project has documented the molecular processes that underlie the clinical and histologic states in kidney transplants, and provides a diagnostic tool that can be used to calibrate biomarkers, optimize histology interpretation, and guide clinical trials.


Assuntos
Transplante de Rim , Animais , Camundongos , Transplante de Rim/efeitos adversos , Rim/patologia , Anticorpos , Fenótipo , Fibrose , Atrofia/etiologia , Atrofia/patologia , Rejeição de Enxerto/diagnóstico , Biópsia
18.
Transplantation ; 108(2): 445-454, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37726883

RESUMO

BACKGROUND: The Banff system for histologic diagnosis of rejection in kidney transplant biopsies uses guidelines to assess designated features-lesions, donor-specific antibody (DSA), and C4d staining. We explored whether using regression equations to interpret the features as well as current guidelines could establish the relative importance of each feature and improve histologic interpretation. METHODS: We developed logistic regression equations using the designated features to predict antibody-mediated rejection (AMR/mixed) and T-cell-mediated rejection (TCMR/mixed) in 1679 indication biopsies from the INTERCOMEX study ( ClinicalTrials.gov NCT01299168). Equations were trained on molecular diagnoses independent of the designated features. RESULTS: In regression and random forests, the important features predicting molecular rejection were as follows: for AMR, ptc and g, followed by cg; for TCMR, t > i. V-lesions were relatively unimportant. C4d and DSA were also relatively unimportant for predicting AMR: by AUC, the model excluding them (0.853) was nearly as good as the model including them (0.860). Including time posttransplant slightly but significantly improved all models. By AUC, regression predicted molecular AMR and TCMR better than Banff histologic diagnoses. More importantly, in biopsies called "no rejection" by Banff guidelines, regression equations based on histology features identified histologic and molecular rejection-related changes in some biopsies and improved survival predictions. Thus, regression can screen for missed rejection. CONCLUSIONS: Using lesion-based regression equations in addition to Banff histology guidelines defines the relative important of histology features for identifying rejection, allows screening for potential missed diagnoses, and permits early estimates of AMR when C4d and DSA are not available.


Assuntos
Transplante de Rim , Transplante de Rim/efeitos adversos , Rejeição de Enxerto , Sobrevivência de Enxerto , Anticorpos , Linfócitos T , Biópsia
19.
Transplantation ; 108(4): 898-910, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150492

RESUMO

BACKGROUND: Among all biopsies in the Trifecta-Kidney Study ( ClinicalTrials.gov NCT04239703), elevated plasma donor-derived cell-free DNA (dd-cfDNA) correlated most strongly with molecular antibody-mediated rejection (AMR) but was also elevated in other states: T cell-mediated rejection (TCMR), acute kidney injury (AKI), and some apparently normal biopsies. The present study aimed to define the molecular correlates of plasma dd-cfDNA within specific states. METHODS: Dd-cfDNA was measured by the Prospera test. Molecular rejection and injury states were defined using the Molecular Microscope system. We studied the correlation between dd-cfDNA and the expression of genes, transcript sets, and classifier scores within specific disease states, and compared AMR, TCMR, and AKI to biopsies classified as normal and no injury (NRNI). RESULTS: In all 604 biopsies, dd-cfDNA was elevated in AMR, TCMR, and AKI. Within AMR biopsies, dd-cfDNA correlated with AMR activity and stage. Within AKI, the correlations reflected acute parenchymal injury, including cell cycling. Within biopsies classified as MMDx Normal and archetypal No injury (NRNI), dd-cfDNA still correlated significantly with rejection- and injury-related genes. TCMR activity (eg, the TCMR Prob classifier) correlated with dd-cfDNA, but within TCMR biopsies, top gene correlations were complex and not the top TCMR-selective genes. CONCLUSIONS: In kidney transplants, elevated plasma dd-cfDNA is associated with 3 distinct molecular states in the donor tissue: AMR, recent parenchymal injury (including cell cycling), and TCMR, potentially complicated by parenchymal disruption. Moreover, subtle rejection- and injury-related changes in the donor tissue can contribute to dd-cfDNA elevations in transplants considered to have no rejection or injury.


Assuntos
Injúria Renal Aguda , Ácidos Nucleicos Livres , Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Anticorpos , Doadores de Tecidos , Ácidos Nucleicos Livres/genética , Rejeição de Enxerto/genética
20.
Transplantation ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538559

RESUMO

BACKGROUND: Plasma donor-derived cell-free DNA (dd-cfDNA) is used to screen for rejection in heart transplants. We launched the Trifecta-Heart study (ClinicalTrials.gov No. NCT04707872), an investigator-initiated, prospective trial, to examine the correlations between genome-wide molecular changes in endomyocardial biopsies (EMBs) and plasma dd-cfDNA. The present report analyzes the correlation of plasma dd-cfDNA with gene expression in EMBs from 4 vanguard centers and compared these correlations with those in 604 kidney transplant biopsies in the Trifecta-Kidney study (ClinicalTrials.gov No. NCT04239703). METHODS: We analyzed 137 consecutive dd-cfDNA-EMB pairs from 70 patients. Plasma %dd-cfDNA was measured by the Prospera test (Natera Inc), and gene expression in EMBs was assessed by Molecular Microscope Diagnostic System using machine-learning algorithms to interpret rejection and injury states. RESULTS: Top transcripts correlating with dd-cfDNA were related to genes increased in rejection such as interferon gamma-inducible genes (eg, HLA-DMA ) but also with genes induced by injury and expressed in macrophages (eg, SERPINA1 and HMOX1 ). In gene enrichment analysis, the top dd-cfDNA-correlated genes reflected inflammation and rejection pathways. Dd-cfDNA correlations with rejection genes in EMB were similar to those seen in kidney transplant biopsies, with somewhat stronger correlations for TCMR genes in hearts and ABMR genes in kidneys. However, the correlations with parenchymal injury-induced genes and macrophage genes were much stronger in hearts. CONCLUSIONS: In this first analysis of Trifecta-Heart study, dd-cfDNA correlates significantly with molecular rejection but also with injury and macrophage infiltration, reflecting the proinflammatory properties of injured cardiomyocytes. The relationship supports the utility of dd-cfDNA in clinical management of heart transplant recipients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA