Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 71(9): 735-45, 2015 Sep.
Artigo em Japonês | MEDLINE | ID: mdl-26400557

RESUMO

Standardized uptake value (SUV) has been widely used as a semi-quantitative metric of uptake in FDGPET/ CT for diagnosis of malignant tumors and evaluation of tumor therapies. However, the SUV depends on various factors including PET/CT scanner specifications and reconstruction parameters. The purpose of this study is to harmonize the SUV among two PET/CT models of different generation: two units of Discovery ST Elite Performance(DSTEP) and Discovery 690 (D690) PET/CT scanners. The NEMA body phantom filled with 18F solution was scanned for 30 minutes in list-mode. The D690 PET images were reconstructed with OSEM, OSEM+TOF, and OSEM+PSF. Gaussian post-filters of 4-9 mm FWHM were applied to find the parameters that provides harmonized SUV. We determined the SUV-harmonized parameter for each reconstruction algorithm. Then, the 10 PET images simulating clinical scan conditions were respectively generated to evaluate the bias and variability of SUV(max) and SUV(peak). The SUV(max) strongly depended not only on spatial resolution but also on image noise. On the other hand, the SUV(peak) was a robust metric to image noise level. TOF improved the variability of SUV(max) and SUV(peak). Thus, we were able to harmonize the spatial resolution using SUV(peak) based on the phantom study. Because SUV(max) was also strongly affected by image noise, sufficient count statistics is essential for SUV(max) harmonization. We recommended that TOF reconstruction and SUV(peak) metric should be used to harmonize SUV.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Neoplasias Pulmonares/diagnóstico , Imagem Multimodal , Imagens de Fantasmas
2.
Ann Nucl Med ; 33(4): 288-294, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30707349

RESUMO

OBJECTIVE: Whole-body dynamic imaging using positron emission tomography (PET) facilitates the quantification of tracer kinetics. It is potentially valuable for the differential diagnosis of tumors and for the evaluation of therapeutic efficacy. In whole-body dynamic PET with continuous bed motion (CBM) (WBDCBM-PET), the pass number and bed velocity are key considerations. In the present study, we aimed to investigate the effect of a combination of pass number and bed velocity on the quantitative accuracy and quality of WBDCBM-PET images. METHODS: In this study, WBDCBM-PET imaging was performed at a body phantom using seven bed velocity settings in combination with pass numbers. The resulting image quality was evaluated. For comparing different acquisition settings, the dynamic index (DI) was obtained using the following formula: [P/S], where P represents the pass number, and S represents the bed velocity (mm/s). The following physical parameters were evaluated: noise equivalent count at phantom (NECphantom), percent background variability (N10 mm), percent contrast of the 10 mm hot sphere (QH, 10 mm), the QH, 10 mm/N10 mm ratio, and the maximum standardized uptake value (SUVmax). Furthermore, visual evaluation was performed. RESULTS: The NECphantom was equivalent for the same DI settings regardless of the bed velocity. The N10 mm exhibited an inverse correlation (r < - 0.89) with the DI. QH,10 mm was not affected by DI, and a correlation between QH,10 mm/N10 mm ratio and DI was found at all the velocities (r > 0.93). The SUVmax of the spheres was not influenced by the DI. The coefficient of variations caused by bed velocity decreased in larger spheres. There was no significant difference between the bed velocities on visual evaluation. CONCLUSION: The quantitative accuracy and image quality achieved with WBDCBM-PET was comparable to that achieved with non-dynamic CBM, regardless of the pass number and bed velocity used during imaging for a given acquisition time.


Assuntos
Movimento (Física) , Tomografia por Emissão de Pósitrons/instrumentação , Imagem Corporal Total/instrumentação , Artefatos , Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Controle de Qualidade , Razão Sinal-Ruído
3.
J Nucl Med Technol ; 47(1): 55-59, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30413592

RESUMO

We aimed to evaluate the influence of minimal misalignment of a hot spot on the repeatability of PET images using repositioning of point sources. Methods: Point sources with an inner diameter of 1 mm were made with 1 µL of 18F solution. Seven point sources were placed on the x-axis in the field of view. For fixed-position imaging, PET data were acquired for 10 min 5 times serially. For variable-position imaging, PET data were acquired for 10 min each with the point sources placed at 0, ±0.5, and ±1.0 mm in the x-axis direction. The data were reconstructed using ordered-subsets expectation maximization (OSEM) and OSEM plus point-spread function (PSF). The image matrix was 128 × 128, 200 × 200, 256 × 256, 400 × 400, and 512 × 512 pixels. The normalized maximum count (rMax), the coefficient of variance (CVmax), and the full width at half maximum were analyzed. Results: The hot spots on OSEM images far from the center became faint and broad, whereas those on OSEM+PSF images became small and dense. Although rMax was overestimated at the 5-cm position on OSEM images, rMax at other positions was overestimated on OSEM+PSF images with a matrix of at least 256 × 256. rMax showed a similar pattern in fixed- and variable-position images. CVmax in fixed-position OSEM images was less than 2%, irrespective of matrix size. In contrast, CVmax in variable-position images was higher than in fixed-position images. CVmax was higher for OSEM+PSF images than for OSEM images. The full width at half maximum increased at positions far from the center on OSEM images but was stable at all positions on OSEM+PSF images. Conclusion: The repeatability of the small hot spot was affected by the minimal misalignment, especially on OSEM+PSF images. Precise positioning is necessary if PET is to be used as a biomarker. Professionals should recognize that PSF correction worsens the repeatability of the small hot spot although improving the spatial resolution of PET images.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/instrumentação , Artefatos , Imagens de Fantasmas
4.
Asia Ocean J Nucl Med Biol ; 6(2): 120-128, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29998145

RESUMO

OBJECTIVES: The purpose of this study was to examine the optimal reconstruction parameters for brain dopamine transporter SPECT images obtained with a fan beam collimator and compare the results with those obtained by using parallel-hole collimators. METHODS: Data acquisition was performed using two SPECT/CT devices, namely a Symbia T6 and an Infinia Hawkeye 4 (device A and B) equipped with fan-beam (camera A-1 and B-1), low- and medium-energy general-purpose (camera A-2 and B-2), and low-energy high-resolution (camera A-3 and B-3) collimators. The SPECT images were reconstructed using filtered back projection (FBP) with Chang's attenuation correction. However, the scatter correction was not performed. A pool phantom and a three-dimensional (3D) brain phantom were filled with 123I solution to examine the reconstruction parameters. The optimal attenuation coefficient was based on the visual assessment of the profile curve, coefficient of variation (CV) [%], and summed difference from the reference activity of the pool phantom. The optimal Butterworth filter for the 3D-brain phantom was also determined based on a visual assessment. The anthropomorphic striatal phantom was filled with 123I solution at striatum-to-background radioactivity ratios of 8, 6, 4, and 3. The specific binding ratio (SBR) of the striatum (calculated by the CT method) was used to compare the results with those of the parallel-hole collimators. RESULTS: The optimal attenuation coefficients were 0.09, 0.11, 0.05, 0.05, 0.11, and, 0.10 cm-1 for cameras A-1, A-2, A-3, B-1, B-2, and B-3, respectively. The cutoff frequencies of the Butterworth filter were 0.32, 0.40, and 0.36 cycles/cm for camera A, and 0.46, 0.44, and 0.44 cycles/cm for camera B, respectively. The recovery rates of the SBRmean with camera A were 51.2%, 49.4%, and 45.6%, respectively. The difference was not statistically significant. The recovery rates of the SBR with camera B were 59.2%, 50.7%, and 50.8%, respectively. Camera B-1 showed significantly high SBR values. CONCLUSION: As the findings indicated, the optimal reconstruction parameters differed according to the devices and collimators. The fan beam collimator was found to provide promising results with each device.

5.
Ann Nucl Med ; 30(1): 68-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26486151

RESUMO

OBJECTIVE: The aim of this study was to investigate the relationship between the NEC and TOF-PET image quality. METHODS: The National Electrical Manufactures Association and International Electrical Commission (NEMA IEC) body phantom with a 10-mm diameter sphere was filled with an 18F-FDG solution with a 4:1 radioactivity ratio. The PET data were acquired in the three-dimensional list mode for 20 min. We created frame data ranging from 1 to 5 min acquisition time, which were then reconstructed using the baseline ordered-subsets expectation maximization (OSEM), the OSEM + point spread function (PSF) algorithm, OSEM + time-of-flight (TOF) algorithm and OSEM + PSF + TOF algorithm. The PET images were analyzed according to the noise-equivalent count (NEC), the coefficients of variance of the background (CVBG), the maximum count (CVmax) and the contrast (CVCONT). The results were compared with the recommended value according to the guidelines for the oncology FDG-PET/CT protocol. RESULTS: The NEC was higher than the recommended value at 3 min or longer acquisition time. The CVBG lower than 15% were obtained at 3 min acquisition time without TOF and at 2 min acquisition time with TOF. The CVBG of 10% or lower were obtained at 5 min or longer acquisition time without TOF and at 4 min or longer acquisition time with TOF. Both the CVmax and CVCONT lower than 10% were obtained at 3 min or longer acquisition time without TOF and at 1 min acquisition or longer with TOF. No particular relationships were observed between the frame number and degree of the variation in the image quality. The CVCONT significantly correlated with the NEC for the data reconstructed without TOF information, while there were no significant correlations between these useful metrics for the data reconstructed with TOF. CONCLUSION: This study demonstrated that the NEC is not a useful metric for the evaluation of the image quality on TOF-PET images.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Razão Sinal-Ruído , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Controle de Qualidade , Fatores de Tempo
6.
Asia Ocean J Nucl Med Biol ; 4(2): 72-80, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27408895

RESUMO

OBJECTIVES: The aim of this study was to determine the optimal reconstruction parameters for iterative reconstruction in different devices and collimators for dopamine transporter (DaT) single-photon emission computed tomography (SPECT). The results were compared between filtered back projection (FBP) and different attenuation correction (AC) methods. METHODS: An anthropomorphic striatal phantom was filled with (123)I solutions at different striatum-to-background radioactivity ratios. Data were acquired using two SPECT/CT devices, equipped with a low-to-medium-energy general-purpose collimator (cameras A-1 and B-1) and a low-energy high-resolution (LEHR) collimator (cameras A-2 and B-2). The SPECT images were once reconstructed by FBP using Chang's AC and once by ordered subset expectation maximization (OSEM) using both CTAC and Chang's AC; moreover, scatter correction was performed. OSEM on cameras A-1 and A-2 included resolution recovery (RR). The images were analyzed, using the specific binding ratio (SBR). Regions of interest for the background were placed on both frontal and occipital regions. RESULTS: The optimal number of iterations and subsets was 10i10s on camera A-1, 10i5s on camera A-2, and 7i6s on cameras B-1 and B-2. The optimal full width at half maximum of the Gaussian filter was 2.5 times the pixel size. In the comparison between FBP and OSEM, the quality was superior on OSEM-reconstructed images, although edge artifacts were observed in cameras A-1 and A-2. The SBR recovery of OSEM was higher than that of FBP on cameras A-1 and A-2, while no significant difference was detected on cameras B-1 and B-2. Good linearity of SBR was observed in all cameras. In the comparison between Chang's AC and CTAC, a significant correlation was observed on all cameras. The difference in the background region influenced SBR differently in Chang's AC and CTAC on cameras A-1 and B-1. CONCLUSION: Iterative reconstruction improved image quality on all cameras, although edge artifacts were observed in images captured by cameras with RR. The SBR of OSEM with RR was higher than that of FBP, while the SBR of OSEM without RR was equal to that of FBP. Also, the SBR of Chang's AC varied with different background regions in cameras A-1 and B-1.

7.
Ann Nucl Med ; 30(2): 97-103, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26531181

RESUMO

OBJECTIVE: The aim of this study was to quantitatively evaluate the edge artifacts in PET images reconstructed using the point-spread function (PSF) algorithm at different sphere-to-background ratios of radioactivity (SBRs). METHODS: We used a NEMA IEC body phantom consisting of six spheres with 37, 28, 22, 17, 13 and 10 mm in inner diameter. The background was filled with (18)F solution with a radioactivity concentration of 2.65 kBq/mL. We prepared three sets of phantoms with SBRs of 16, 8, 4 and 2. The PET data were acquired for 20 min using a Biograph mCT scanner. The images were reconstructed with the baseline ordered subsets expectation maximization (OSEM) algorithm, and with the OSEM + PSF correction model (PSF). For the image reconstruction, the number of iterations ranged from one to 10. The phantom PET image analyses were performed by a visual assessment of the PET images and profiles, a contrast recovery coefficient (CRC), which is the ratio of SBR in the images to the true SBR, and the percent change in the maximum count between the OSEM and PSF images (Δ % counts). RESULTS: In the PSF images, the spheres with a diameter of 17 mm or larger were surrounded by a dense edge in comparison with the OSEM images. In the spheres with a diameter of 22 mm or smaller, an overshoot appeared in the center of the spheres as a sharp peak in the PSF images in low SBR. These edge artifacts were clearly observed in relation to the increase of the SBR. The overestimation of the CRC was observed in 13 mm spheres in the PSF images. In the spheres with a diameter of 17 mm or smaller, the Δ % counts increased with an increasing SBR. The Δ % counts increased to 91 % in the 10-mm sphere at the SBR of 16. CONCLUSIONS: The edge artifacts in the PET images reconstructed using the PSF algorithm increased with an increasing SBR. In the small spheres, the edge artifact was observed as a sharp peak at the center of spheres and could result in overestimation.


Assuntos
Algoritmos , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons , Razão Sinal-Ruído , Imagens de Fantasmas , Radioatividade , Tomografia Computadorizada por Raios X
8.
Ann Nucl Med ; 30(6): 393-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26955819

RESUMO

OBJECTIVE: The purpose of this study was to investigate the influence of respiratory motion on the evaluation of the intratumoral heterogeneity of FDG uptake using cumulative SUV-volume histogram (CSH) and fractal analyses. METHODS: We used an NEMA IEC body phantom with a homogeneous hot sphere phantom (HO) and two heterogeneous hot sphere phantoms (HE1 and HE2). The background radioactivity of (18)F in the NEMA phantom was 5.3 kBq/mL. The ratio of radioactivity was 4:2:1 for the HO and the outer rims of the HE1 and HE2 phantoms, the inner cores of the HE1 and HE2 phantoms, and background, respectively. Respiratory motion was simulated using a motion table with an amplitude of 2 cm. PET/CT data were acquired using Biograph mCT in motionless and moving conditions. The PET images were analyzed by both CSH and fractal analyses. The area under the CSH (AUC-CSH) and the fractal dimension (FD) was used as quantitative metrics. RESULTS: In motionless conditions, the AUC-CSHs of the HO (0.80), HE1 (0.75) and HE2 (0.65) phantoms were different. They did not differ in moving conditions (HO, 0.63; HE1, 0.65; HE2, 0.60). The FD of the HO phantom (0.77) was smaller than the FDs of the HE1 (1.71) and HE2 (1.98) phantoms in motionless conditions; however, the FDs of the HO (1.99) and HE1 (2.19) phantoms were not different from each other and were smaller than that of the HE2 (3.73) phantom in moving conditions. CONCLUSION: Respiratory motion affected the results of the CSH and fractal analyses for the evaluation of the heterogeneity of the PET/CT images. The influence of respiratory motion was considered to vary depending on the object size.


Assuntos
Artefatos , Fractais , Movimento , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Respiração , Transporte Biológico , Fluordesoxiglucose F18/metabolismo , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
9.
J Nucl Med Technol ; 43(3): 222-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26271802

RESUMO

UNLABELLED: Standardized uptake values (SUVs) have been widely used in the diagnosis of malignant tumors and in clinical trials of tumor therapies as semiquantitative metrics of tumor (18)F-FDG uptake. However, SUVs for small lesions are liable to errors due to partial-volume effect and statistical noise. The purpose of this study was to evaluate the reproducibility and accuracy of maximum and peak SUV (SUVmax and SUVpeak, respectively) of small lesions in phantom experiments. METHODS: We used a body phantom with 6 spheres in a quarter warm background. The PET data were acquired for 1,800 s in list-mode, from which data were extracted to generate 15 PET images for each of the 60-, 90-, 120-, 150-, and 180-s scanning times. The SUVmax and SUVpeak of the hot spheres in the 1,800-s scan were used as a reference (SUVref,max and SUVref,peak). Coefficients of variation for both SUVmax and SUVpeak in hot spheres (CVmax and CVpeak) were calculated to evaluate the variability of the SUVs. On the other hand, percentage differences between SUVmax and SUVref,max and between SUVpeak and SUVref,peak were calculated for evaluation of the accuracy of SUV. We additionally examined the coefficients of variation of background activity and the percentage background variability as parameters for the physical assessment of image quality. RESULTS: Visibility of a 10-mm-diameter hot sphere was considerably different among scan frames. The CVmax and CVpeak increased as the sphere size became smaller and as the acquisition time became shorter. SUVmax was generally overestimated as the scan time shortened and the sphere size increased. The SUVmax and SUVpeak of a 37-mm-diameter sphere for 60-s scans had average positive biases of 28.3% and 4.4%, compared with the reference. CONCLUSION: SUVmax was variable and overestimated as the scan time decreased and the sphere size increased. In contrast, SUVpeak was a more robust and accurate metric than SUVmax. The measurements of SUVpeak (or SUVpeak normalized to lean body mass) in addition to SUVmax are desirable for reproducible and accurate quantification in clinical situations.


Assuntos
Fluordesoxiglucose F18/farmacocinética , Interpretação de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Imagem Corporal Total/métodos , Simulação por Computador , Humanos , Modelos Biológicos , Modelos Estatísticos , Imagens de Fantasmas , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Imagem Corporal Total/instrumentação
10.
J Nucl Med Technol ; 43(1): 41-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25537760

RESUMO

UNLABELLED: The aim of this study was to evaluate differences in dopamine transporter SPECT images among different SPECT/CT devices and to determine the most appropriate region of interest (ROI) for semiquantitative evaluation. METHODS: An anthropomorphic striatal phantom was filled with (123)I solutions of different striatum-to-background radioactivity ratios. Data were acquired using 2 SPECT/CT devices equipped with low- to medium-energy general-purpose and low-energy high-resolution (LEHR) collimators. The SPECT images were reconstructed by filtered backprojection with both attenuation and scatter correction and then were analyzed using specific binding ratio (SBR). The most appropriate of 7 ROI types was determined, and we then compared the linearity and recovery of SBR among the different SPECT/CT devices and collimators. RESULTS: The linearity of SBR was excellent for all types of ROIs. The ROI contouring the striatum based on the CT images showed the best recovery of SBR using mean activity in the striatal ROI (SBRmean) (47.8%). For this ROI, the recovery of SBRmean for SPECT/CT with a LEHR collimator with thick septa and a long hole length was 61.6%-significantly higher than that of other devices. CONCLUSION: The ROI contouring the striatum based on CT images was considered appropriate for evaluating dopamine transporter SPECT/CT. Among the different SPECT/CT devices, an LEHR collimator designed for (123I)I imaging is recommended.


Assuntos
Encéfalo/metabolismo , Imagens de Fantasmas , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Encéfalo/diagnóstico por imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA