Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38843491

RESUMO

The human airway mucociliary epithelium can be recapitulated in vitro using primary cells cultured in an Air-Liquid Interface (ALI), a reliable surrogate to perform pathophysiological studies. As tremendous variations exist between media used for ALI-cultured human airway epithelial cells, our study aimed to evaluate the impact of several media (BEGMTM, PneumaCultTM, "Half&Half" and "Clancy") on cell type distribution using single-cell RNA sequencing and imaging. Our work revealed the impact of these media on cell composition, gene expression profile, cell signaling and epithelial morphology. We found higher proportions of multiciliated cells in PneumaCultTM-ALI and Half&Half, stronger EGF signaling from basal cells in BEGMTM-ALI, differential expression of the SARS-CoV-2 entry factor ACE2, and distinct secretome transcripts depending on media used. We also established that proliferation in PneumaCultTM-Ex Plus favored secretory cell fate, showing the key influence of proliferation media on late differentiation epithelial characteristics. Altogether, our data offer a comprehensive repertoire for evaluating the effects of culture conditions on airway epithelial differentiation and will help to choose the most relevant medium according to the processes to be investigated such as cilia, mucus biology or viral infection. We detail useful parameters that should be explored to document airway epithelial cell fate and morphology.

2.
Genome Res ; 30(11): 1633-1642, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32973039

RESUMO

To gain better insight into the dynamic interaction between cells and their environment, we developed the agonist-induced functional analysis and cell sorting (aiFACS) technique, which allows the simultaneous recording and sorting of cells in real-time according to their immediate and individual response to a stimulus. By modulating the aiFACS selection parameters, testing different developmental times, using various stimuli, and multiplying the analysis of readouts, it is possible to analyze cell populations of any normal or pathological tissue. The association of aiFACS with single-cell transcriptomics allows the construction of functional tissue cartography based on specific pharmacological responses of cells. As a proof of concept, we used aiFACS on the dissociated mouse brain, a highly heterogeneous tissue, enriching it in interneurons by stimulation with KCl or with AMPA, an agonist of the glutamate receptors, followed by sorting based on calcium levels. After AMPA stimulus, single-cell transcriptomics of these aiFACS-selected interneurons resulted in a nine-cluster classification. Furthermore, we used aiFACS on interneurons derived from the brain of the Fmr1-KO mouse, a rodent model of fragile X syndrome. We showed that these interneurons manifest a generalized defective response to AMPA compared with wild-type cells, affecting all the analyzed cell clusters at one specific postnatal developmental time.


Assuntos
Encéfalo/metabolismo , Separação Celular/métodos , Citometria de Fluxo/métodos , Interneurônios/metabolismo , RNA-Seq , Análise de Célula Única , Encéfalo/citologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Técnicas de Inativação de Genes , Interneurônios/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
3.
Development ; 146(20)2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31558434

RESUMO

The upper airway epithelium, which is mainly composed of multiciliated, goblet, club and basal cells, ensures proper mucociliary function and can regenerate in response to assaults. In chronic airway diseases, defective repair leads to tissue remodeling. Delineating key drivers of differentiation dynamics can help understand how normal or pathological regeneration occurs. Using single-cell transcriptomics and lineage inference, we have unraveled trajectories from basal to luminal cells, providing novel markers for specific populations. We report that: (1) a precursor subgroup of multiciliated cells, which we have entitled deuterosomal cells, is defined by specific markers, such as DEUP1, FOXN4, YPEL1, HES6 and CDC20B; (2) goblet cells can be precursors of multiciliated cells, thus explaining the presence of hybrid cells that co-express markers of goblet and multiciliated cells; and (3) a repertoire of molecules involved in the regeneration process, such as keratins or components of the Notch, Wnt or BMP/TGFß pathways, can be identified. Confirmation of our results on fresh human and pig airway samples, and on mouse tracheal cells, extend and confirm our conclusions regarding the molecular and cellular choreography at work during mucociliary epithelial differentiation.


Assuntos
Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Células Caliciformes/citologia , Mucosa Respiratória/citologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Células Epiteliais/metabolismo , Células Caliciformes/metabolismo , Humanos , Camundongos , RNA-Seq , Mucosa Respiratória/metabolismo , Suínos , Traqueia/citologia , Traqueia/metabolismo
4.
PLoS Pathog ; 16(10): e1008660, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075093

RESUMO

Mammary carcinoma, including triple-negative breast carcinomas (TNBC) are tumor-types for which human and canine pathologies are closely related at the molecular level. The efficacy of an oncolytic vaccinia virus (VV) was compared in low-passage primary carcinoma cells from TNBC versus non-TNBC. Non-TNBC cells were 28 fold more sensitive to VV than TNBC cells in which VV replication is impaired. Single-cell RNA-seq performed on two different TNBC cell samples, infected or not with VV, highlighted three distinct populations: naïve cells, bystander cells, defined as cells exposed to the virus but not infected and infected cells. The transcriptomes of these three populations showed striking variations in the modulation of pathways regulated by cytokines and growth factors. We hypothesized that the pool of genes expressed in the bystander populations was enriched in antiviral genes. Bioinformatic analysis suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. In addition, we demonstrated experimentally that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. This information could be used to design new generations of oncolytic poxviruses. Beyond the field of gene therapy, this study demonstrates that single-cell transcriptomics can be used to identify cellular factors influencing viral replication.


Assuntos
Neoplasias Mamárias Animais/metabolismo , Terapia Viral Oncolítica/métodos , Fatores de Transcrição/metabolismo , Transcriptoma , Vaccinia virus/genética , Vacínia/metabolismo , Replicação Viral , Animais , Biologia Computacional , Cães , Feminino , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/terapia , Neoplasias Mamárias Animais/virologia , Análise de Célula Única , Fatores de Transcrição/genética , Vacínia/genética , Vacínia/virologia
5.
Am J Respir Crit Care Med ; 202(12): 1636-1645, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32726565

RESUMO

Rationale: The respiratory tract constitutes an elaborate line of defense that is based on a unique cellular ecosystem.Objectives: We aimed to investigate cell population distributions and transcriptional changes along the airways by using single-cell RNA profiling.Methods: We have explored the cellular heterogeneity of the human airway epithelium in 10 healthy living volunteers by single-cell RNA profiling. A total of 77,969 cells were collected at 35 distinct locations, from the nose to the 12th division of the airway tree.Measurements and Main Results: The resulting atlas is composed of a high percentage of epithelial cells (89.1%) but also immune (6.2%) and stromal (4.7%) cells with distinct cellular proportions in different regions of the airways. It reveals differential gene expression between identical cell types (suprabasal, secretory, and multiciliated cells) from the nose (MUC4, PI3, SIX3) and tracheobronchial (SCGB1A1, TFF3) airways. By contrast, cell-type-specific gene expression is stable across all tracheobronchial samples. Our atlas improves the description of ionocytes, pulmonary neuroendocrine cells, and brush cells and identifies a related population of NREP-positive cells. We also report the association of KRT13 with dividing cells that are reminiscent of previously described mouse "hillock" cells and with squamous cells expressing SCEL and SPRR1A/B.Conclusions: Robust characterization of a single-cell cohort in healthy airways establishes a valuable resource for future investigations. The precise description of the continuum existing from the nasal epithelium to successive divisions of the airways and the stable gene expression profile of these regions better defines conditions under which relevant tracheobronchial proxies of human respiratory diseases can be developed.


Assuntos
Brônquios/citologia , Brônquios/crescimento & desenvolvimento , Diferenciação Celular/genética , Proliferação de Células/genética , Células Epiteliais/citologia , Mucosa Nasal/citologia , Mucosa Nasal/crescimento & desenvolvimento , Células Estromais/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Regulação da Expressão Gênica , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade
6.
Am J Respir Crit Care Med ; 200(2): 184-198, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30964696

RESUMO

Rationale: Given the paucity of effective treatments for idiopathic pulmonary fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. TGF-ß (transforming growth factor-ß) is the main profibrotic factor, but its inhibition is associated with severe side effects because of its pleiotropic role. Objectives: To determine if downstream noncoding effectors of TGF-ß in fibroblasts may represent new effective therapeutic targets whose modulation may be well tolerated. Methods: We investigated the whole noncoding fraction of TGF-ß-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblasts. Differential expression of the long noncoding RNA (lncRNA) DNM3OS (dynamin 3 opposite strand) and its associated microRNAs (miRNAs) was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis. Measurements and Main Results: We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-ß-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e., miR-199a-5p/3p and miR-214-3p), which influence SMAD and non-SMAD components of TGF-ß signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis. Conclusions: Pharmacological approaches aiming at interfering with the lncRNA DNM3OS may represent new effective therapeutic strategies in IPF.


Assuntos
Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , RNA Longo não Codificante/genética , Fator de Crescimento Transformador beta/metabolismo , Animais , Caveolina 1/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Camundongos , MicroRNAs/metabolismo , Miofibroblastos/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Via de Sinalização Wnt
7.
J Biol Chem ; 292(30): 12483-12495, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28596382

RESUMO

Keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. Although some of the early events involved in this pathology have been identified, the subsequent steps leading to tumor development are poorly defined. We demonstrate here that the development of mouse tumors induced by the concomitant application of a carcinogen and a tumor promoter (7,12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA), respectively) is associated with the up-regulation of a previously uncharacterized long noncoding RNA (lncRNA), termed AK144841. We found that AK144841 expression was absent from normal skin and was specifically stimulated in tumors and highly tumorigenic cells. We also found that AK144841 exists in two variants, one consisting of a large 2-kb transcript composed of four exons and one consisting of a 1.8-kb transcript lacking the second exon. Gain- and loss-of-function studies indicated that AK144841 mainly inhibited gene expression, specifically down-regulating the expression of genes of the late cornified envelope-1 (Lce1) family involved in epidermal terminal differentiation and of anticancer genes such as Cgref1, Brsk1, Basp1, Dusp5, Btg2, Anpep, Dhrs9, Stfa2, Tpm1, SerpinB2, Cpa4, Crct1, Cryab, Il24, Csf2, and Rgs16 Interestingly, the lack of the second exon significantly decreased AK144841's inhibitory effect on gene expression. We also noted that high AK144841 expression correlated with a low expression of the aforementioned genes and with the tumorigenic potential of cell lines. These findings suggest that AK144841 could contribute to the dedifferentiation program of tumor-forming keratinocytes and to molecular cascades leading to tumor development.


Assuntos
Carcinoma de Células Escamosas/genética , Diferenciação Celular/genética , Regulação para Baixo/genética , RNA Longo não Codificante/genética , Neoplasias Cutâneas/genética , Animais , Carcinoma de Células Escamosas/patologia , Feminino , Camundongos , Camundongos Endogâmicos , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas
8.
Eur Respir J ; 52(4)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30190271

RESUMO

In line with the pathophysiological continuum described between nose and bronchus in allergic respiratory diseases, we assessed whether nasal epithelium could mirror the Type 2 T-helper cell (Th2) status of bronchial epithelium.Nasal and bronchial cells were collected by brushing from healthy controls (C, n=13), patients with allergic rhinitis and asthma (AR, n=12), and patients with isolated allergic rhinitis (R, n=14). Cellular composition was assessed by flow cytometry, gene expression was analysed by RNA sequencing and Th2, Type 17 T-helper cell (Th17) and interferon (IFN) signatures were derived from the literature.Infiltration by polymorphonuclear neutrophils (PMN) in the nose excluded 30% of the initial cohort. All bronchial samples from the AR group were Th2-high. The gene expression profile of nasal samples from the AR group correctly predicted the paired bronchial sample Th2 status in 71% of cases. Nevertheless, nasal cells did not appear to be a reliable surrogate for the Th2 response, in particular due to a more robust influence of the IFN response in 14 out of 26 nasal samples. The Th2 scores in the nose and bronchi correlated with mast cell count (both p<0.001) and number of sensitisations (p=0.006 and 0.002), while the Th17 scores correlated with PMN count (p=0.006 and 0.003).The large variability in nasal cell composition and type of inflammation restricts its use as a surrogate for assessing bronchial Th2 inflammation in AR patients.


Assuntos
Asma/imunologia , Rinite Alérgica/imunologia , Células Th17/citologia , Células Th2/citologia , Adulto , Asma/fisiopatologia , Líquido da Lavagem Broncoalveolar/citologia , Estudos de Casos e Controles , Feminino , Expressão Gênica , Humanos , Inflamação/imunologia , Interferons/metabolismo , Masculino , Líquido da Lavagem Nasal/citologia , Mucosa Respiratória/metabolismo , Rinite Alérgica/fisiopatologia , Análise de Sequência de RNA , Células Th17/imunologia , Células Th2/imunologia , Adulto Jovem
9.
New Phytol ; 216(3): 882-896, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28906559

RESUMO

Root knot nematodes (RKN) are root parasites that induce the genetic reprogramming of vascular cells into giant feeding cells and the development of root galls. MicroRNAs (miRNAs) regulate gene expression during development and plant responses to various stresses. Disruption of post-transcriptional gene silencing in Arabidopsis ago1 or ago2 mutants decrease the infection rate of RKN suggesting a role for this mechanism in the plant-nematode interaction. By sequencing small RNAs from uninfected Arabidopsis roots and from galls 7 and 14 d post infection with Meloidogyne incognita, we identified 24 miRNAs differentially expressed in gall as putative regulators of gall development. Moreover, strong activity within galls was detected for five miRNA promoters. Analyses of nematode development in an Arabidopsis miR159abc mutant had a lower susceptibility to RKN, suggesting a role for the miR159 family in the plant response to M. incognita. Localization of mature miR159 within the giant and surrounding cells suggested a role in giant cell and gall. Finally, overexpression of miR159 in galls at 14 d post inoculation was associated with the repression of the miR159 target MYB33 which expression is restricted to the early stages of infection. Overall, these results implicate the miR159 in plant responses to RKN.


Assuntos
Arabidopsis/genética , Arabidopsis/parasitologia , MicroRNAs/genética , Tylenchoidea/patogenicidade , Animais , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Interações Hospedeiro-Parasita/genética , Raízes de Plantas/genética , Tumores de Planta/parasitologia , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
10.
PLoS Genet ; 7(7): e1002187, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21811417

RESUMO

Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K-dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the symbiotic state and in the gastroderm. Our results thus offer new insight into the inter-partner signaling required for the physiological mechanisms of the symbiosis that is crucial for coral health.


Assuntos
Dinoflagellida/genética , Anêmonas-do-Mar/genética , Simbiose/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/classificação , Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular/classificação , Moléculas de Adesão Celular/genética , Dinoflagellida/fisiologia , França , Perfilação da Expressão Gênica , Geografia , Interações Hospedeiro-Parasita/genética , Temperatura Alta , Mar Mediterrâneo , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Anêmonas-do-Mar/parasitologia , Homologia de Sequência de Aminoácidos , Fatores de Tempo
11.
Front Bioinform ; 4: 1340339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501112

RESUMO

Single-cell CRISPR-based transcriptome screens are potent genetic tools for concomitantly assessing the expression profiles of cells targeted by a set of guides RNA (gRNA), and inferring target gene functions from the observed perturbations. However, due to various limitations, this approach lacks sensitivity in detecting weak perturbations and is essentially reliable when studying master regulators such as transcription factors. To overcome the challenge of detecting subtle gRNA induced transcriptomic perturbations and classifying the most responsive cells, we developed a new supervised autoencoder neural network method. Our Sparse supervised autoencoder (SSAE) neural network provides selection of both relevant features (genes) and actual perturbed cells. We applied this method on an in-house single-cell CRISPR-interference-based (CRISPRi) transcriptome screening (CROP-Seq) focusing on a subset of long non-coding RNAs (lncRNAs) regulated by hypoxia, a condition that promote tumor aggressiveness and drug resistance, in the context of lung adenocarcinoma (LUAD). The CROP-seq library of validated gRNA against a subset of lncRNAs and, as positive controls, HIF1A and HIF2A, the 2 main transcription factors of the hypoxic response, was transduced in A549 LUAD cells cultured in normoxia or exposed to hypoxic conditions during 3, 6 or 24 h. We first validated the SSAE approach on HIF1A and HIF2 by confirming the specific effect of their knock-down during the temporal switch of the hypoxic response. Next, the SSAE method was able to detect stable short hypoxia-dependent transcriptomic signatures induced by the knock-down of some lncRNAs candidates, outperforming previously published machine learning approaches. This proof of concept demonstrates the relevance of the SSAE approach for deciphering weak perturbations in single-cell transcriptomic data readout as part of CRISPR-based screening.

12.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730619

RESUMO

Pediatric T-cell Acute Lymphoblastic Leukemia (T-ALL) relapses are still associated with a dismal outcome, justifying the search for new therapeutic targets and relapse biomarkers. Using single-cell RNA sequencing (scRNAseq) data from three paired samples of pediatric T-ALL at diagnosis and relapse, we first conducted a high-dimensional weighted gene co-expression network analysis (hdWGCNA). This analysis highlighted several gene co-expression networks (GCNs) and identified relapse-associated hub genes, which are considered potential driver genes. Shared relapse-expressed genes were found to be related to antigen presentation (HLA, B2M), cytoskeleton remodeling (TUBB, TUBA1B), translation (ribosomal proteins, EIF1, EEF1B2), immune responses (MIF, EMP3), stress responses (UBC, HSP90AB1/AA1), metabolism (FTH1, NME1/2, ARCL4C), and transcriptional remodeling (NF-κB family genes, FOS-JUN, KLF2, or KLF6). We then utilized sparse partial least squares discriminant analysis to select from a pool of 481 unique leukemic hub genes, which are the genes most discriminant between diagnosis and relapse states (comprising 44, 35, and 31 genes, respectively, for each patient). Applying a Cox regression method to these patient-specific genes, along with transcriptomic and clinical data from the TARGET-ALL AALL0434 cohort, we generated three model gene signatures that efficiently identified relapsed patients within the cohort. Overall, our approach identified new potential relapse-associated genes and proposed three model gene signatures associated with lower survival rates for high-score patients.

13.
Am J Pathol ; 180(4): 1688-701, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22326754

RESUMO

Mantle cell lymphoma (MCL) is a B-cell malignancy characterized by a monoclonal proliferation of lymphocytes with the co-expression of CD5 and CD43, but not of CD23. Typical MCL is associated with overexpression of cyclin D1, and blastoid MCL variants are associated with Myc (alias c-myc) translocations. In this study, we developed a murine model of MCL-like lymphoma by crossing Cdk4(R24C) mice with Myc-3'RR transgenic mice. The Cdk4(R24C) mouse is a knockin strain that expresses a Cdk4 protein that is resistant to inhibition by p16(INK4a) as well as other INK4 family members. Ablation of INK4 control on Cdk4 does not affect lymphomagenesis, B-cell maturation, and functions in Cdk4(R24C) mice. Additionally, B cells were normal in numbers, cell cycle activity, mitogen responsiveness, and Ig synthesis in response to activation. By contrast, breeding Cdk4(R24C) mice with Myc-3'RR transgenic mice prone to develop aggressive Burkitt lymphoma-like lymphoma (CD19(+)IgM(+)IgD(+) cells) leads to the development of clonal blastoid MCL-like lymphoma (CD19(+)IgM(+)CD5(+)CD43(+)CD23(-) cells) in Myc/Cdk4(R24C) mice. Western blot analysis revealed high amounts of Cdk4/cyclin D1 complexes as the main hallmark of these lymphomas. These results indicate that although silent in nonmalignant B cells, a defect in the INK4-Cdk4 checkpoint can participate in lymphomagenesis in conjunction with additional alterations of cell cycle control, a situation that might be reminiscent of the development of human blastoid MCL.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Quinase 4 Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Genes myc , Linfoma de Célula do Manto/genética , Animais , Linfócitos B/imunologia , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/imunologia , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Imunoglobulinas/biossíntese , Imunofenotipagem , Ativação Linfocitária/imunologia , Linfoma de Célula do Manto/imunologia , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Linfopoese/genética , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Hipermutação Somática de Imunoglobulina
14.
J Immunol ; 187(11): 5772-82, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22039300

RESUMO

Although c-myc is classically described as the driving oncogene in Burkitt's lymphoma (BL), deregulation and mutations of c-myc have been reported in multiple solid tumors and in other mature B cell malignancies such as mantle cell lymphoma (MCL), myeloma, and plasma cell lymphoma (PCL). After translocation into the IgH locus, c-myc is constitutively expressed under the control of active IgH enhancers. Those located in the IgH 3' regulatory region (3'RR) are master control elements of class switch recombination and of the transcriptional burst associated with plasma cell differentiation. c-myc-3'RR mice are prone to lymphomas with rather homogeneous, most often BL-like, phenotypes with incomplete penetrance (75% tumor incidence) and long latencies (10-12 mo). To reproduce c-myc-induced mature B cell lymphomagenesis in the context of an additional defect often observed in human lymphomas, we intercrossed c-myc-3'RR with p53(+/-) mice. Double transgenic c-myc-3'RR/p53(+/-) mice developed lymphoma with short latency (2-4 mo) and full penetrance (100% tumor incidence). The spectrum of B lymphomas occurring in c-myc-3'RR/p53(+/-) mice was widened, including nonactivated (CD43(-)) BL, activated (CD43(+)) BL, MCL-like lymphoma, and PCL, thus showing that 3'RR-mediated deregulation of c-myc can promote various types of B lymphoproliferation in cells that first acquired a p53 defect. c-myc/p53(+/-) mice closely reproduce many features of BL, MCL, and PCL and provide a novel and efficient model to dissect the molecular events leading to c-myc-induced lymphomagenesis and an important tool to test potential therapeutic agents on malignant B cells featuring various maturation stages.


Assuntos
Linfócitos B/patologia , Transformação Celular Neoplásica/genética , Genes myc/genética , Cadeias Pesadas de Imunoglobulinas/genética , Linfoma/genética , Sequências Reguladoras de Ácido Nucleico/genética , Proteína Supressora de Tumor p53/genética , Animais , Separação Celular , Transformação Celular Neoplásica/imunologia , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transgenes
15.
Hortic Res ; 10(6): uhad068, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37287445

RESUMO

Prior exposure to microbial-associated molecular patterns or specific chemical compounds can promote plants into a primed state with stronger defence responses. ß-aminobutyric acid (BABA) is an endogenous stress metabolite that induces resistance protecting various plants towards diverse stresses. In this study, by integrating BABA-induced changes in selected metabolites with transcriptome and proteome data, we generated a global map of the molecular processes operating in BABA-induced resistance (BABA-IR) in tomato. BABA significantly restricts the growth of the pathogens Oidium neolycopersici and Phytophthora parasitica but not Botrytis cinerea. A cluster analysis of the upregulated processes showed that BABA acts mainly as a stress factor in tomato. The main factor distinguishing BABA-IR from other stress conditions was the extensive induction of signaling and perception machinery playing a key role in effective resistance against pathogens. Interestingly, the signalling processes and immune response activated during BABA-IR in tomato differed from those in Arabidopsis with substantial enrichment of genes associated with jasmonic acid (JA) and ethylene (ET) signalling and no change in Asp levels. Our results revealed key differences between the effect of BABA on tomato and other model plants studied until now. Surprisingly, salicylic acid (SA) is not involved in BABA downstream signalization whereas ET and JA play a crucial role.

16.
FEBS Lett ; 597(12): 1623-1637, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37102425

RESUMO

The MIR449 genomic locus encompasses several regulators of multiciliated cell (MCC) formation (multiciliogenesis). The miR-449 homologs miR-34b/c represent additional regulators of multiciliogenesis that are transcribed from another locus. Here, we characterized the expression of BTG4, LAYN, and HOATZ, located in the MIR34B/C locus using single-cell RNA-seq and super-resolution microscopy from human, mouse, or pig multiciliogenesis models. BTG4, LAYN, and HOATZ transcripts were expressed in both precursors and mature MCCs. The Layilin/LAYN protein was absent from primary cilia, but it was expressed in apical membrane regions or throughout motile cilia. LAYN silencing altered apical actin cap formation and multiciliogenesis. HOATZ protein was detected in primary cilia or throughout motile cilia. Altogether, our data suggest that the MIR34B/C locus may gather potential actors of multiciliogenesis.


Assuntos
Cílios , MicroRNAs , Humanos , Camundongos , Animais , Suínos , Cílios/genética , Cílios/metabolismo , Actinas/metabolismo , Genoma , Genômica , MicroRNAs/genética , MicroRNAs/metabolismo , Lectinas Tipo C/metabolismo
17.
Cell Stem Cell ; 30(6): 800-817.e9, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267915

RESUMO

Cholesterol efflux pathways could be exploited in tumor biology to unravel cancer vulnerabilities. A mouse model of lung-tumor-bearing KRASG12D mutation with specific disruption of cholesterol efflux pathways in epithelial progenitor cells promoted tumor growth. Defective cholesterol efflux in epithelial progenitor cells governed their transcriptional landscape to support their expansion and create a pro-tolerogenic tumor microenvironment (TME). Overexpression of the apolipoprotein A-I, to raise HDL levels, protected these mice from tumor development and dire pathologic consequences. Mechanistically, HDL blunted a positive feedback loop between growth factor signaling pathways and cholesterol efflux pathways that cancer cells hijack to expand. Cholesterol removal therapy with cyclodextrin reduced tumor burden in progressing tumor by suppressing the proliferation and expansion of epithelial progenitor cells of tumor origin. Local and systemic perturbations of cholesterol efflux pathways were confirmed in human lung adenocarcinoma (LUAD). Our results position cholesterol removal therapy as a putative metabolic target in lung cancer progenitor cells.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Colesterol/metabolismo , Neoplasias Pulmonares/genética , Proliferação de Células , Pulmão , Células-Tronco/metabolismo , Apolipoproteína A-I/metabolismo , Microambiente Tumoral
18.
Pharmaceutics ; 14(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35631574

RESUMO

Despite the development of new therapeutic strategies, cancer remains one of the leading causes of mortality worldwide. One of the current major challenges is the resistance of cancers to chemotherapy treatments inducing metastases and relapse of the tumor. The Hedgehog receptor Patched (Ptch1) is overexpressed in many types of cancers. We showed that Ptch1 contributes to the efflux of doxorubicin and plays an important role in the resistance to chemotherapy in adrenocortical carcinoma (ACC), a rare cancer which presents strong resistance to the standard of care chemotherapy treatment. In the present study, we isolated and characterized a subpopulation of the ACC cell line H295R in which Ptch1 is overexpressed and more present at the cell surface. This cell subpopulation is more resistant to doxorubicin, grows as spheroids, and has a greater capability of clonogenicity, migration, and invasion than the parental cells. Xenograft experiments performed in mice and in ovo showed that this cell subpopulation is more tumorigenic and metastatic than the parental cells. These results suggest that this cell subpopulation has cancer stem-like or persistent cell properties which were strengthened by RNA-seq. If present in tumors from ACC patients, these cells could be responsible for therapy resistance, relapse, and metastases.

19.
Cell Rep ; 39(11): 110949, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705045

RESUMO

Despite the ubiquitous function of macrophages across the body, the diversity, origin, and function of adrenal gland macrophages remain largely unknown. We define the heterogeneity of adrenal gland immune cells using single-cell RNA sequencing and use genetic models to explore the developmental mechanisms yielding macrophage diversity. We define populations of monocyte-derived and embryonically seeded adrenal gland macrophages and identify a female-specific subset with low major histocompatibility complex (MHC) class II expression. In adulthood, monocyte recruitment dominates adrenal gland macrophage maintenance in female mice. Adrenal gland macrophage sub-tissular distribution follows a sex-dimorphic pattern, with MHC class IIlow macrophages located at the cortico-medullary junction. Macrophage sex dimorphism depends on the presence of the cortical X-zone. Adrenal gland macrophage depletion results in altered tissue homeostasis, modulated lipid metabolism, and decreased local aldosterone production during stress exposure. Overall, these data reveal the heterogeneity of adrenal gland macrophages and point toward sex-restricted distribution and functions of these cells.


Assuntos
Glândulas Suprarrenais , Macrófagos , Monócitos , Caracteres Sexuais , Glândulas Suprarrenais/metabolismo , Animais , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Contagem de Leucócitos , Macrófagos/metabolismo , Masculino , Camundongos
20.
Cells ; 10(7)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34360002

RESUMO

Fibrosis is a deleterious invasion of tissues associated with many pathological conditions, such as Duchenne muscular dystrophy (DMD) for which no cure is at present available for its prevention or its treatment. Fibro-adipogenic progenitors (FAPs) are resident cells in the human skeletal muscle and can differentiate into myofibroblasts, which represent the key cell population responsible for fibrosis. In this study, we delineated the pool of microRNAs (miRNAs) that are specifically modulated by TGFß1 in FAPs versus myogenic progenitors (MPs) by a global miRNome analysis. A subset of candidates, including several "FibromiRs", was found differentially expressed between FAPs and MPs and was also deregulated in DMD versus healthy biopsies. Among them, the expression of the TGFß1-induced miR-199a~214 cluster was strongly correlated with the fibrotic score in DMD biopsies. Loss-of-function experiments in FAPs indicated that a miR-214-3p inhibitor efficiently blocked expression of fibrogenic markers in both basal conditions and following TGFß1 stimulation. We found that FGFR1 is a functional target of miR-214-3p, preventing the signaling of the anti-fibrotic FGF2 pathway during FAP fibrogenesis. Overall, our work demonstrates that the « FibromiR ¼ miR-214-3p is a key activator of FAP fibrogenesis by modulating the FGF2/FGFR1/TGFß axis, opening new avenues for the treatment of DMD.


Assuntos
Fator 2 de Crescimento de Fibroblastos/genética , MicroRNAs/genética , Distrofia Muscular de Duchenne/genética , Miofibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta1/genética , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/genética , Adolescente , Adulto , Sequência de Bases , Diferenciação Celular , Criança , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibrose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Miofibroblastos/patologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Células-Tronco/patologia , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA