Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(1): e1011917, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38227578

RESUMO

Chronic hepatitis B is a global health problem and current treatments only suppress hepatitis B virus (HBV) infection, highlighting the need for new curative treatments. Oxygen levels influence HBV replication and we previously reported that hypoxia inducible factors (HIFs) activate the basal core promoter (BCP). Here we show that the hypoxic-dependent increase in BCP-derived transcripts is dependent on N6-methyladenosine (m6A) modifications in the 5' stem loop that regulate RNA half-life. Application of a probe-enriched long-read sequencing method to accurately map the HBV transcriptome showed an increased abundance of pre-genomic RNA under hypoxic conditions. Mapping the transcription start sites of BCP-RNAs identified a role for hypoxia to regulate pre-genomic RNA splicing that is dependent on m6A modification. Bioinformatic analysis of published single cell RNA-seq of murine liver showed an increased expression of the RNA demethylase ALKBH5 in the peri-central low oxygen region. In vitro studies with a human hepatocyte derived HepG2-NTCP cell line showed increased ALKBH5 gene expression under hypoxic conditions and a concomitant reduction in m6A-modified HBV BCP-RNA and host RNAs. Silencing the demethylase reduced the level of BCP-RNAs and host gene (CA9, NDRG1, VEGFA, BNIP3, FUT11, GAP and P4HA1) transcripts and this was mediated via reduced HIFα expression. In summary, our study highlights a previously unrecognized role for ALKBH5 in orchestrating viral and cellular transcriptional responses to low oxygen.


Assuntos
Vírus da Hepatite B , Hepatite B , Animais , Humanos , Camundongos , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Fucosiltransferases/genética , Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hipóxia , Oxigênio , RNA , Transcriptoma
2.
J Biol Chem ; 300(3): 105724, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325742

RESUMO

Mammalian cells have evolved strategies to regulate gene expression when oxygen is limited. Hypoxia-inducible factors (HIF) are the major transcriptional regulators of host gene expression. We previously reported that HIFs bind and activate hepatitis B virus (HBV) DNA transcription under low oxygen conditions; however, the global cellular response to low oxygen is mediated by a family of oxygenases that work in concert with HIFs. Recent studies have identified a role for chromatin modifiers in sensing cellular oxygen and orchestrating transcriptional responses, but their role in the HBV life cycle is as yet undefined. We demonstrated that histone lysine demethylase 4 (KDM4) can restrict HBV, and pharmacological or oxygen-mediated inhibition of the demethylase increases viral RNAs derived from both episomal and integrated copies of the viral genome. Sequencing studies demonstrated that KDM4 is a major regulator of the hepatic transcriptome, which defines hepatocellular permissivity to HBV infection. We propose a model where HBV exploits cellular oxygen sensors to replicate and persist in the liver. Understanding oxygen-dependent pathways that regulate HBV infection will facilitate the development of physiologically relevant cell-based models that support efficient HBV replication.


Assuntos
Vírus da Hepatite B , Histona Desmetilases com o Domínio Jumonji , Oxigênio , Replicação Viral , Humanos , DNA Viral/genética , Genoma Viral/genética , Hepatite B/enzimologia , Hepatite B/metabolismo , Hepatite B/virologia , Vírus da Hepatite B/genética , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Fígado/virologia , Oxigênio/metabolismo , Plasmídeos/genética , Transcriptoma , Replicação Viral/genética
3.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175123

RESUMO

Hepatitis B Virus (HBV) is a small DNA virus that replicates via an episomal covalently closed circular DNA (cccDNA) that serves as the transcriptional template for viral mRNAs. The host protein, CCCTC-binding factor (CTCF), is a key regulator of cellular transcription by maintaining epigenetic boundaries, nucleosome phasing, stabilisation of long-range chromatin loops and directing alternative exon splicing. We previously reported that CTCF binds two conserved motifs within Enhancer I of the HBV genome and represses viral transcription, however, the underlying mechanisms were not identified. We show that CTCF depletion in cells harbouring cccDNA-like HBV molecules and in de novo infected cells resulted in an increase in spliced transcripts, which was most notable in the abundant SP1 spliced transcript. In contrast, depletion of CTCF in cell lines with integrated HBV DNA had no effect on the abundance of viral transcripts and in line with this observation there was limited evidence for CTCF binding to viral integrants, suggesting that CTCF-regulation of HBV transcription is specific to episomal cccDNA. Analysis of HBV chromatin topology by Assay for Transposase Accessible Chromatin Sequencing (ATAC-Seq) revealed an accessible region spanning Enhancers I and II and the basal core promoter (BCP). Mutating the CTCF binding sites within Enhancer I resulted in a dramatic rearrangement of chromatin accessibility where the open chromatin region was no longer detected, indicating loss of the phased nucleosome up- and down-stream of the HBV enhancer/BCP. These data demonstrate that CTCF functions to regulate HBV chromatin conformation and nucleosomal positioning in episomal maintained cccDNA, which has important consequences for HBV transcription regulation.


Assuntos
Cromatina , Vírus da Hepatite B , Cromatina/genética , Vírus da Hepatite B/genética , DNA Circular/genética , Nucleossomos , Fator de Ligação a CCCTC/genética
4.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474206

RESUMO

Mitochondria are key organelles that regulate several functions essential for maintaining cellular homeostasis [...].


Assuntos
Mitocôndrias , Respiração , Mitocôndrias/fisiologia , Homeostase
5.
Cell Death Discov ; 10(1): 178, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627359

RESUMO

Mitochondrial dysfunction represents one of the most common molecular hallmarks of both sporadic and familial forms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder caused by the selective degeneration and death of motor neurons. The accumulation of misfolded proteins on and within mitochondria, as observed for SOD1 G93A mutant, correlates with a drastic reduction of mitochondrial respiration and the inhibition of metabolites exchanges, including ADP/ATP and NAD+/NADH, across the Voltage-Dependent Anion-selective Channel 1 (VDAC1), the most abundant channel protein of the outer mitochondrial membrane. Here, we show that the AAV-mediated upregulation of VDAC1 in the spinal cord of transgenic mice expressing SOD1 G93A completely rescues the mitochondrial respiratory profile. This correlates with the increased activity and levels of key regulators of mitochondrial functions and maintenance, namely the respiratory chain Complex I and the sirtuins (Sirt), especially Sirt3. Furthermore, the selective increase of these mitochondrial proteins is associated with an increase in Tom20 levels, the receptor subunit of the TOM complex. Overall, our results indicate that the overexpression of VDAC1 has beneficial effects on ALS-affected tissue by stabilizing the Complex I-Sirt3 axis.

6.
iScience ; 27(6): 109853, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38784007

RESUMO

The voltage-dependent anion-selective channel isoform 1 (VDAC1) is a pivotal component in cellular metabolism and apoptosis with a prominent role in many cancer types, offering a unique therapeutic intervention point. Through an in-silico-to-in-vitro approach we identified a set of VA molecules (VDAC Antagonists) that selectively bind to VDAC1 and display specificity toward cancer cells. Biochemical characterization showed that VA molecules can directly interact with VDAC1 with micromolar affinity by competing with the endogenous ligand NADH for a partially shared binding site. NADH displacement results in mitochondrial distress and reduced cell proliferation, especially when compared to non-cancerous cells. Experiments performed on organoids derived from intrahepatic cholangiocarcinoma patients demonstrated a dose-dependent reduction in cell viability upon treatment with VA molecules with lower impact on healthy cells than conventional treatments like gemcitabine. VA molecules are chemical entities representing promising candidates for further optimization and development as cancer therapy strategies through precise metabolic interventions.

7.
iScience ; 27(1): 108763, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38261926

RESUMO

Respiratory syncytial virus (RSV) is a global healthcare problem, causing respiratory illness in young children and elderly individuals. Our knowledge of the host pathways that define susceptibility to infection and disease severity are limited. Hypoxia inducible factors (HIFs) define metabolic responses to low oxygen and regulate inflammatory responses in the lower respiratory tract. We demonstrate a role for HIFs to suppress RSV entry and RNA replication. We show that hypoxia and HIF prolyl-hydroxylase inhibitors reduce the expression of the RSV entry receptor nucleolin and inhibit viral cell-cell fusion. We identify a HIF regulated microRNA, miR-494, that regulates nucleolin expression. In RSV-infected mice, treatment with the clinically approved HIF prolyl-hydroxylase inhibitor, Daprodustat, reduced the level of infectious virus and infiltrating monocytes and neutrophils in the lung. This study highlights a role for HIF-signalling to limit multiple aspects of RSV infection and associated inflammation and informs future therapeutic approaches for this respiratory pathogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA