Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 29(6): 829-842, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37520814

RESUMO

It is important to have a short period of fresh seed dormancy in some of the groundnut species to counter pre-harvest sprouting (PHS). One of the main causes of PHS is the activation of ethylene-mediated pathways. To determine the effect of ethylene, the study was conducted and alterations in amylase, proteins and fatty acids were observed at the 0, 6, 12, and 24 h stages after ethrel administration. The result showed an increase in amylase activity, and the fatty acids profile showed a unique alteration pattern at different germination stages. Two-dimensional gel electrophoresis (2DGE) revealed differential expression of proteins at each stage. The trypsin digestion following spectral development through UPLC-MS/MS enabled identification of number of differentially expressed proteins. A total of 49 proteins were identified from 2DGE excised spots. The majority were belonged to seed storage-related proteins like Arah1, Arah2, AAI- domain containing protein, conglutin, Arah3/4, arachin, glycinin. Expression of lipoxygenase1, lipoxygenase9 and Arah2 genes were further confirmed by qRT-PCR which showed its involvement at transcript level. Up-regulation of lipoxygenase9 is correlated with decreased content of fatty acids during germination. Phytohormone detection revealed decrease in ABA, SA and JA content which are generally inhibitor of seed germination while GA, IAA and kinetin concentration increased revealing positive regulation of seed germination. We present an integrated view of proteomics, phytohormone profile, carbohydrate and lipid metabolism to unravel mechanism of fresh seed dormancy. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01332-6.

2.
Physiol Mol Biol Plants ; 27(8): 1675-1693, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34539110

RESUMO

Sesame (Sesamum indicum L.) is an oilseed crop challenged by many biotic stresses. Charcoal rot caused by Macrophomina phaseolina (MP) is one of the most devastating diseases of sesame. Till date, molecular mechanisms of resistance to charcoal rot in sesame is not yet reported. In this study, two sesame variety GT-10 (resistant) and RT-373 (susceptible) were identified with contrasting disease incidence when infected with MP. To get the molecular insight, root samples were collected at 0, 24, 48- and 72-h post inoculation (hpi) with the pathogen and generated RNAseq data was analyzed. A total of 1153 and 1226 differentially expressed genes (DEGS) were identified in GT-10 and RT-373, respectively. During the inoculation with MP, resistant genotype showed high number DEGs at early time point of 24 hpi and when compared to late expression in susceptible genotype at 48 hpi. Distinct clusters were represented for each time period represented by cytochrome P450 83B1-like, single anchor, hypothetical protein C4D60, kirola like and heat shock proteins in the resistant genotype contributing for resistance. Analysis of differentially expressed genes, catalogued the genes involved in synthesis of pathogenesis-related (PR) proteins, MYB, WRKY, leucine zipper protein, bHLH, bZIP and NAC transcription factors, ABC transporters (B, C and G subfamily), glutathione metabolism, secondary metabolites, fatty acid biosynthesis and phytohormones like auxin, abscisic acid, ethylene and gibberellic acid. Additionally, in the resistant response we have found three unique GO terms including ATP binding, ribonucleotide binding and nucleic acid binding in molecular function category. The molecular clues generated through this work will provide an important resource of genes contributing for disease resistance and could prioritize genes for functional validation in the important oil crop. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01039-6.

3.
Physiol Mol Biol Plants ; 21(3): 317-27, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26261396

RESUMO

In a field experiment three irrigation treatments were given to twelve peanut genotypes through drip. At 80 days after sowing (DAS) the amount of irrigation applied was 20 % higher than the evaporative demand (ET) in T1, 25 % less than ET in T2 and 48 % less than ET in T3 against the cumulative evaporative demand of 412 mm. The relative water content (RWC) of peanut leaves reduced by cutting irrigation from 93.5 % in T1 to 91.1 % in T2 and 77.2 % in T3 but, net photosynthetic rate (P N) was higher in T2 (29.6 µmol m(-2) s(-1)) than T1 (28.6 µmol m(-2) s(-1)) and T3 (24.3 µmol m(-2) s(-1)) at 75-80 DAS. Peanut genotype ICGV 91114 showed the highest P N (30.9 µmol m(-2) s(-1)) which was statistically at par with GG 20, ICGV 86590, TAG 24, SB XI, TMV 2 and TPG 41. The non-photochemical quenching (NPQ) varied with different irrigation treatment with lowest in T2 and highest in T3. The de-epoxidation state (DeS) was 38 % in T1 and T2 but, increased to 47 % in T3 due to the sever water deficit stress. Applying 20 % higher irrigation than the ET demand (T1) does not warrant any extra benefits in terms of higher photosynthesis in peanut at 75-80 DAS. Further, a reduction of 25 % of the ET (T2) in peanut seems to be the ideal condition for photosynthesis and desirable chlorophyll fluorescence parameters at 80 DAS. Girnar 3 and ICGV 91114 showed NPQ value above 2.2 and higher de-epoxidation state, maintained least deviation in Fv/Fm and Fv'/Fm' under severe water deficit condition are promising peanut genotypes.

4.
Physiol Mol Biol Plants ; 19(3): 323-31, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24431501

RESUMO

Polyamine oxidase and lipoxygenase enzymes are key players for hyper sensitive reaction (HR) during incompatible interaction of host-pathogen. Thus, the role of lipoxygenase and polyamines was studied in the wilt pathogen infected and non infected tissues of resistant and susceptible genotypes of castor at 0 days after infection (DAI), 5 DAI and 10 DAI (30 days after sowing). The lipoxygenase (LOX) and polyamine oxidase (PAO) activities were higher in the incompatible interaction at all the stages of analysis. The constitutive level of malondyaldehyde (MDA) content, a product of lipid peroxidation was higher in susceptible genotypes (VP-1 and VI-9), while induced level was higher in resistant genotypes (48-1 and SKP-84) at 5 DAI and 10 DAI . Polyamine profiling using HPTLC showed higher spermidine and spermine content in resistant genotypes at 10 DAI. Furthermore, spermidine was detected only in the roots of resistant genotypes at 10 DAI. These results suggest the role of high titers of polyamines, LOX and PAO in disease resistance possibly through HR induction.

5.
Sci Rep ; 13(1): 795, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646750

RESUMO

Raffinose family oligosaccharides (RFOs) are known to have important physiological functions in plants. However, the presence of RFOs in legumes causes flatulence, hence are considered antinutrients. To reduce the RFOs content to a desirable limit without compromising normal plant development and functioning, the identification of important regulatory genes associated with the biosynthetic pathway is a prerequisite. In the present study, through comparative RNA sequencing in contrasting genotypes for seed RFOs content at different seed maturity stages, differentially expressed genes (DEGs) associated with the pathway were identified. The DEGs exhibited spatio-temporal expression patterns with high RFOs variety showing early induction of RFOs biosynthetic genes and low RFOs variety showing a late expression at seed maturity. Selective and seed-specific differential expression of raffinose synthase genes (AhRS14 and AhRS6) suggested their regulatory role in RFOs accumulation in peanut seeds, thereby serving as promising targets in low RFOs peanut breeding programs. Despite stachyose being the major seed RFOs fraction, differential expression of raffinose synthase genes indicated the complex metabolic regulation of this pathway. The transcriptomic resource and the genes identified in this study could be studied further to develop low RFOs varieties, thus improving the overall nutritional quality of peanuts.


Assuntos
Arachis , Melhoramento Vegetal , Rafinose/metabolismo , Arachis/genética , Arachis/metabolismo , Oligossacarídeos/metabolismo , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA