Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biomol Struct Dyn ; 40(9): 4021-4037, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33251968

RESUMO

Multiple antibiotic-resistant strains of Klebsiella pneumoniae can cause life-threatening infections. Bacterial enoyl-acyl carrier protein (ACP) reductases (ENRs) are considered critical targets for developing antibiotics. Our current study aims to identify inhibitors of K. pneumoniae ENRs (FabI and FabV). Due to the unavailability of experimental structures, protein models of FabI and FabV were predicted and validated in this study. Virtual screening of the 1930 FDA-approved drug database was conducted against the active site of the FabI protein with the help of the LEA3D server, and carfilzomib was chosen among the screened drugs for further docking studies. Carfilzomib, a proteasome inhibitor used in the treatment of multiple myeloma, was among the best-suited compounds obtained from the virtual screening and was found to be bactericidal in the in vitro experiment. Carfilzomib was docked against the active sites of the FabI and FabV proteins, and the ENR of Mycobacterium tuberculosis, InhA. Carfilzomib showed a high binding affinity with all three proteins. Molecular dynamics (MD) simulations were conducted following the docking studies. MD simulations revealed that carfilzomib binds strongly to the active sites of the above mentioned ENRs. Our study found that carfilzomib is a potential inhibitor of the ENRs of K. pneumoniae and M. tuberculosis. This is a possible mechanism of its bactericidal property against M. tuberculosis observed in vitro in addition to its predicted actions on zinc-dependent metalloprotease-1 and peptide deformylase, two other drug target enzymes of M. tuberculosis. Our study suggests that this drug could be used as a lead compound to develop antibiotics that can selectively act against ENRs of bacteria, without interfering with the activities of human proteasome. Communicated by Ramaswamy H. Sarma.


Assuntos
Antibacterianos , Enoil-(Proteína de Transporte de Acila) Redutase (NADH) , Mycobacterium tuberculosis , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Klebsiella pneumoniae , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/metabolismo , NAD/metabolismo , Oligopeptídeos
2.
J Biomol Struct Dyn ; 40(19): 9509-9521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34048660

RESUMO

Antibiotic resistance is a global concern. Two members of the bacterial genus Elizabethkingia, namely, E. anophelis and E. meningoseptica have raised much concern in recent years because of their resistance to multiple commonly used antibiotics. Identification of multidrug resistant and pan-drug resistant bacteria has propelled the search for new antibiotics that can act on unconventional targets. Researches are going on to find out the possibility of using bacterial ribonucleotide reductases as a novel target for antibiotic development. Through in silico evaluations, this study aims for characterization and functional annotation of ribonucleotide reductase enzymes of E. anophelis and E. meningoseptica. Binding affinities with these enzymes of the compounds that have shown promising results in inhibiting Pseudomonas aeruginosa growth by acting on its ribonucleotide reductase were also assessed by molecular docking and dynamics simulations. Insights from this study will help in battling these infections in the near future. Communicated by Ramaswamy H. Sarma.


Assuntos
Infecções por Flavobacteriaceae , Ribonucleotídeo Redutases , Humanos , Simulação de Acoplamento Molecular , Estreptonigrina , Infecções por Flavobacteriaceae/microbiologia , Genoma Bacteriano , Filogenia , Antibacterianos/farmacologia
3.
ACS Appl Bio Mater ; 5(3): 971-1012, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35226465

RESUMO

Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Estudos Prospectivos , Distribuição Tecidual
4.
Sci Rep ; 12(1): 20232, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418863

RESUMO

Magnaporthe oryzae is one of the most notorious fungal pathogens that causes blast disease in cereals, and results in enormous loss of grain production. Many chemical fungicides are being used to control the pathogen but none of them are fully effective in controlling blast disease. Therefore, there is a demand for the discovery of a new natural biofungicide to manage the blast disease efficiently. A large number of new natural products showed inhibitory activities against M. oryzae in vitro. To find out effective biofungicides, we performed in silico molecular docking analysis of some of the potent natural compounds targeting four enzymes namely, scytalone dehydratase, SDH1 (PDB ID:1STD), trihydroxynaphthalene reductase, 3HNR (PDB ID:1YBV), trehalose-6-phosphate synthase, Tps1 (PDB ID:6JBI) and isocitrate lyase, ICL1 (PDB ID:5E9G) of M. oryzae fungus that regulate melanin biosynthesis and/or appresorium formation. Thirty-nine natural compounds that were previously reported to inhibit the growth of M. oryzae were subjected to rigid and flexible molecular docking against aforementioned enzymes followed by molecular dynamic simulation. The results of virtual screening showed that out of 39, eight compounds showed good binding energy with any one of the target enzymes as compared to reference commercial fungicides, azoxystrobin and strobilurin. Among the compounds, camptothecin, GKK1032A2 and chaetoviridin-A bind with more than one target enzymes of M. oryzae. All of the compounds except tricyclazole showed good bioactivity score. Taken together, our results suggest that all of the eight compounds have the potential to develop new fungicides, and remarkably, camptothecin, GKK1032A2 and chaetoviridin-A could act as multi-site mode of action fungicides against the blast fungus M. oryzae.


Assuntos
Fungicidas Industriais , Magnaporthe , Oryza , Fungicidas Industriais/farmacologia , Grão Comestível , Simulação de Acoplamento Molecular , Oryza/microbiologia , Camptotecina/farmacologia
5.
Genomics Inform ; 19(2): e16, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34261301

RESUMO

Even in the current age of advanced medicine, the prognosis of malignant peritoneal mesothelioma (MPM) remains abysmal. Molecular mechanisms responsible for the initiation and progression of MPM are still largely not understood. Adopting an integrated bioinformatics approach, this study aims to identify the key genes and pathways responsible for MPM. Genes that are differentially expressed in MPM in comparison with the peritoneum of healthy controls have been identified by analyzing a microarray gene expression dataset. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of these differentially expressed genes (DEG) were conducted to gain a better insight. A protein-protein interaction (PPI) network of the proteins encoded by the DEGs was constructed using STRING and hub genes were detected analyzing this network. Next, the transcription factors and miRNAs that have possible regulatory roles on the hub genes were detected. Finally, survival analyses based on the hub genes were conducted using the GEPIA2 web server. Six hundred six genes were found to be differentially expressed in MPM; 133 are upregulated and 473 are downregulated. Analyzing the STRING generated PPI network, six dense modules and 12 hub genes were identified. Fifteen transcription factors and 10 miRNAs were identified to have the most extensive regulatory functions on the DEGs. Through bioinformatics analyses, this work provides an insight into the potential genes and pathways involved in MPM.

6.
Biochem Biophys Rep ; 28: 101179, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917776

RESUMO

T-box transcription factor 5 gene (TBX5) encodes the transcription factor TBX5, which plays a crucial role in the development of heart and upper limbs. Damaging single nucleotide variants in this gene alter the protein structure, disturb the functions of TBX5, and ultimately cause Holt-Oram Syndrome (HOS). By analyzing the available single nucleotide polymorphism information in the dbSNP database, this study was designed to identify the most deleterious TBX5 SNPs through in silico approaches and predict their structural and functional consequences. Fifty-eight missense substitutions were found damaging by sequence homology-based tools: SIFT and PROVEAN, and structure homology-based tool PolyPhen-2. Various disease association meta-predictors further scrutinized these SNPs. Additionally, conservation profile of the amino acid residues, their surface accessibility, stability, and structural integrity of the native protein upon mutations were assessed. From these analyses, finally 5 SNPs were detected as the most damaging ones: [rs1565941579 (P85S), rs1269970792 (W121R), rs772248871 (V153D), rs769113870 (E208D), and rs1318021626 (I222N)]. Analyses of stop-lost, nonsense, UTR, and splice site SNPs were also conducted. Through integrative bioinformatics analyses, this study has identified the SNPs that are deleterious to the TBX5 protein structure and have the potential to cause HOS. Further wet-lab experiments can validate these findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA