Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 188(1): 116-129, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34590781

RESUMO

Woodhouse-Sakati syndrome (WSS) is a rare autosomal recessive neuroendocrine and ectodermal disorder caused by variants in the DCAF17 gene. In Qatar, the c.436delC variant has been reported as a possible founder pathogenic variant with striking phenotypic heterogeneity. In this retrospective study, we report on the clinical and molecular characteristics of additional 58 additional Qatari patients with WSS and compare them to international counterparts' findings. A total of 58 patients with WSS from 32 consanguineous families were identified. Ectodermal and endocrine (primary hypogonadism) manifestations were the most common presentations (100%), followed by diabetes mellitus (46%) and hypothyroidism (36%). Neurological manifestations were overlapping among patients with intellectual disability (ID) being the most common (75%), followed by sensorineural hearing loss (43%) and both ID and aggressive behavior (10%). Distinctive facial features were noted in all patients and extrapyramidal manifestations were uncommon (8.6%). This study is the largest to date on Qatari patients with WSS and highlights the high incidence and clinical heterogeneity of WSS in Qatar due to a founder variant c.436delC in the DCAF17 gene. Early suspicion of WSS among Qatari patients with hypogonadism and ID, even in the absence of other manifestations, would shorten the diagnostic odyssey, guide early and appropriate management, and avoid potential complications.


Assuntos
Diabetes Mellitus , Hipogonadismo , Deficiência Intelectual , Alopecia , Animais , Arritmias Cardíacas , Doenças dos Gânglios da Base , Diabetes Mellitus/diagnóstico , Humanos , Hipogonadismo/diagnóstico , Hipogonadismo/genética , Deficiência Intelectual/diagnóstico , Proteínas Nucleares/genética , Linhagem , Catar/epidemiologia , Estudos Retrospectivos , Complexos Ubiquitina-Proteína Ligase/genética
2.
Am J Hum Genet ; 103(6): 948-967, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30526868

RESUMO

Neurodevelopmental disorders (NDD) are genetically and phenotypically heterogeneous conditions due to defects in genes involved in development and function of the nervous system. Individuals with NDD, in addition to their primary neurodevelopmental phenotype, may also have accompanying syndromic features that can be very helpful diagnostically especially those with recognizable facial appearance. In this study, we describe ten similarly affected individuals from six unrelated families of different ethnic origins having bi-allelic truncating variants in TMEM94, which encodes for an uncharacterized transmembrane nuclear protein that is highly conserved across mammals. The affected individuals manifested with global developmental delay/intellectual disability, and dysmorphic facial features including triangular face, deep set eyes, broad nasal root and tip and anteverted nostrils, thick arched eye brows, hypertrichosis, pointed chin, and hypertelorism. Birthweight in the upper normal range was observed in most, and all but one had congenital heart defects (CHD). Gene expression analysis in available cells from affected individuals showed reduced expression of TMEM94. Global transcriptome profiling using microarray and RNA sequencing revealed several dysregulated genes essential for cell growth, proliferation and survival that are predicted to have an impact on cardiotoxicity hematological system and neurodevelopment. Loss of Tmem94 in mouse model generated by CRISPR/Cas9 was embryonic lethal and led to craniofacial and cardiac abnormalities and abnormal neuronal migration pattern, suggesting that this gene is important in craniofacial, cardiovascular, and nervous system development. Our study suggests the genetic etiology of a recognizable dysmorphic syndrome with NDD and CHD and highlights the role of TMEM94 in early development.


Assuntos
Deficiências do Desenvolvimento/genética , Cardiopatias Congênitas/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Nucleares/genética , Anormalidades Múltiplas/genética , Adolescente , Alelos , Animais , Criança , Pré-Escolar , Fácies , Feminino , Humanos , Hipertelorismo/genética , Lactente , Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Malformações do Sistema Nervoso/genética , Fenótipo , Transcriptoma/genética
3.
Am J Med Genet A ; 185(8): 2384-2390, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34003604

RESUMO

TCF7L2 encodes transcription factor 7-like 2 (OMIM 602228), a key mediator of the evolutionary conserved canonical Wnt signaling pathway. Although several large-scale sequencing studies have implicated TCF7L2 in intellectual disability and autism, both the genetic mechanism and clinical phenotype have remained incompletely characterized. We present here a comprehensive genetic and phenotypic description of 11 individuals who have been identified to carry de novo variants in TCF7L2, both truncating and missense. Missense variation is clustered in or near a high mobility group box domain, involving this region in these variants' pathogenicity. All affected individuals present with developmental delays in childhood, but most ultimately achieved normal intelligence or had only mild intellectual disability. Myopia was present in approximately half of the individuals, and some individuals also possessed dysmorphic craniofacial features, orthopedic abnormalities, or neuropsychiatric comorbidities including autism and attention-deficit/hyperactivity disorder (ADHD). We thus present an initial clinical and genotypic spectrum associated with variation in TCF7L2, which will be important in informing both medical management and future research.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Adolescente , Alelos , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Mutação de Sentido Incorreto , Fases de Leitura Aberta , Fenótipo , Síndrome
4.
Am J Med Genet A ; 179(6): 927-935, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30919572

RESUMO

BACKGROUND: Clinical exome sequencing (CES) is rapidly becoming the diagnostic test of choice in patients with suspected Mendelian diseases especially those that are heterogeneous in etiology and clinical presentation. Reporting large CES series can inform guidelines on best practices for test utilization, and improves accuracy of variant interpretation through clinically-oriented data sharing. METHODS: This is a retrospective series of 509 probands from Qatar who underwent singleton or trio CES either as a reflex or naïve (first-tier) test from April 2014 to December 2016 for various clinical indications. RESULTS: The CES diagnostic yield for the overall cohort was 48.3% (n = 246). Dual molecular diagnoses were observed in 2.1% of cases; nearly all of whom (91%) were consanguineous. We report compelling variants in 11 genes with no established Mendelian phenotypes. Unlike reflex-WES, naïve WES was associated with a significantly shorter diagnostic time (3 months vs. 18 months, p < 0.0001). CONCLUSION: Middle Eastern patients tend to have a higher yield from CES than outbred populations, which has important implications in test choice especially early in the diagnostic process. The relatively high diagnostic rate is likely related to the predominance of recessive diagnoses (60%) since consanguinity and positive family history were strong predictors of a positive CES.


Assuntos
Sequenciamento do Exoma , Família , Estudos de Associação Genética , Doenças Genéticas Inatas/epidemiologia , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética/métodos , Doenças Genéticas Inatas/diagnóstico , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Patologia Molecular , Fenótipo , Catar/epidemiologia , Catar/etnologia , Adulto Jovem
5.
J Inherit Metab Dis ; 42(5): 818-830, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30968424

RESUMO

Classical homocystinuria (HCU) is the most common inborn error of metabolism in Qatar, with an incidence of 1:1800, and is caused by the Qatari founder p.R336C mutation in the CBS gene. This study describes the natural history and clinical manifestations of HCU in the Qatari population. A single center study was performed between 2016 and 2017 in 126 Qatari patients, from 82 families. Detailed clinical and biochemical data were collected, and Stanford-Binet intelligence, quality of life and adherence to treatment assessments were conducted prospectively. Patients were assigned to one of three groups, according to the mode of diagnosis: (a) late diagnosis group (LDG), (b) family screening group (FSG), and (c) newborn screening group (NSG). Of the 126 patients, 69 (55%) were in the LDG, 44 (35%) in the NSG, and 13 (10%) in the FSG. The leading factors for diagnosis in the LDG were ocular manifestations (49%), neurological manifestations (45%), thromboembolic events (4%), and hyperactivity and behavioral changes (1%). Both FSG and NSG groups were asymptomatic at time of diagnosis. NSG had significantly higher intelligence quotient, quality of life, and adherence values compared with the LDG. The LDG and FSG had significantly higher methionine levels than the NSG. The LDG also had significantly higher total homocysteine levels than the NSG and FSG. Regression analysis confirmed these results even when adjusting for age at diagnosis, current age, or adherence. These findings increase the understanding of the natural history of HCU and highlight the importance of early diagnosis and treatment. SYNOPSIS: A study in 126 Qatari patients with HCU, including biochemical, clinical, and other key assessments, reveals that patients with a late clinical diagnosis have a poorer outcome, hereby highlighting the importance of early diagnosis and treatment.


Assuntos
Cistationina beta-Sintase/genética , Homocistinúria/diagnóstico , Homocistinúria/genética , Adolescente , Adulto , Criança , Pré-Escolar , Cistationina beta-Sintase/deficiência , Diagnóstico Precoce , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Triagem Neonatal , Catar , Análise de Regressão , Adulto Jovem
6.
Hum Genet ; 134(9): 967-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26077850

RESUMO

Clinical exome sequencing (CES) has become an increasingly popular diagnostic tool in patients with heterogeneous genetic disorders, especially in those with neurocognitive phenotypes. Utility of CES in consanguineous populations has not yet been determined on a large scale. A clinical cohort of 149 probands from Qatar with suspected Mendelian, mainly neurocognitive phenotypes, underwent CES from July 2012 to June 2014. Intellectual disability and global developmental delay were the most common clinical presentations but our cohort displayed other phenotypes, such as epilepsy, dysmorphism, microcephaly and other structural brain anomalies and autism. A pathogenic or likely pathogenic mutation, including pathogenic CNVs, was identified in 89 probands for a diagnostic yield of 60%. Consanguinity and positive family history predicted a higher diagnostic yield. In 5% (7/149) of cases, CES implicated novel candidate disease genes (MANF, GJA9, GLG1, COL15A1, SLC35F5, MAGE4, NEUROG1). CES uncovered two coexisting genetic disorders in 4% (6/149) and actionable incidental findings in 2% (3/149) of cases. Average time to diagnosis was reduced from 27 to 5 months. CES, which already has the highest diagnostic yield among all available diagnostic tools in the setting of Mendelian disorders, appears to be particularly helpful diagnostically in the highly consanguineous Middle Eastern population.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Exoma , Deficiência Intelectual/diagnóstico , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Árabes/genética , Criança , Pré-Escolar , Consanguinidade , Deficiências do Desenvolvimento/genética , Epilepsia/genética , Feminino , Testes Genéticos , Genômica , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Pessoa de Meia-Idade , Fenótipo , Catar , Adulto Jovem
7.
World J Pediatr ; 13(2): 136-143, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28101774

RESUMO

BACKGROUND: Newborn screening is a precondition for early diagnosis and successful treatment of remethylation disorders and classical homocystinuria (cystathionine-ß-synthase deficiency). Newborn screening for classical homocystinuria using total homocysteine measurement in dried blood spots has been very successfully performed for many years for newborns from Qatar. METHODS: A new optimized newborn screening strategy for remethylation disorders and homocystinuria was developed and evaluated for newborns from Qatar using total homocysteine measurement as first-tier and methionine, methionine-phenylalanine-ratio and propionylcarnitine as second-tiers. Proposed cut-offs were also retrospectively evaluated in newborn screening samples of 12 patients with remethylation disorders and vitamin B12 deficiency from Qatar and Germany. RESULTS: Over a 12 months period, the proposed strategy led to a decrease in the recall rate in homocysteine screening for Qatar from 1.09% to 0.68%, while allowing for additional systematic inclusion of remethylation disorders and vitamin B12 deficiency into the screening panel for Qatar. In the evaluated period the applied strategy would have detected all patients with classical homocystinuria identified by the previous strategy and in addition 5 children with maternal nutritional vitamin B12 deficiency and one patient with an isolated remethylation disorder. Additional retrospective evaluation of newborn screening samples of 12 patients from Germany and Qatar with remethlyation disorders or vitamin B12 deficiency showed that all of these patients would have been detected by the cut-offs used in the proposed new strategy. In addition, an adapted strategy for Germany using methionine, methionine-phenylalanine-ratio and propionylcarnitine as first-tier, and homocysteine as a second-tier test was also positively evaluated retrospectively. CONCLUSIONS: The proposed strategy for samples from Qatar allows inclusion of remethylation disorders and vitamin B12 deficiency in the screening panel, while lowering the recall rate. An adapted second-tier strategy is presented for screening in Germany and will be prospectively evaluated over the next years in a pilot project named "Newborn Screening 2020".


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Homocistinúria/diagnóstico , Triagem Neonatal/métodos , Deficiência de Vitamina B 12/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Estudos de Coortes , Feminino , Alemanha/epidemiologia , Homocistinúria/sangue , Homocistinúria/epidemiologia , Humanos , Incidência , Recém-Nascido , Masculino , Projetos Piloto , Catar/epidemiologia , Estudos Retrospectivos , Medição de Risco , Deficiência de Vitamina B 12/sangue , Deficiência de Vitamina B 12/epidemiologia
8.
Cell Rep ; 10(9): 1585-1598, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25753423

RESUMO

Sotos syndrome, characterized by intellectual disability and characteristic facial features, is caused by haploinsufficiency in the NSD1 gene. We conducted an etiological study on two siblings with Sotos features without mutations in NSD1 and detected a homozygous frameshift mutation in the APC2 gene by whole-exome sequencing, which resulted in the loss of function of cytoskeletal regulation in neurons. Apc2-deficient (Apc2-/-) mice exhibited impaired learning and memory abilities along with an abnormal head shape. Endogenous Apc2 expression was downregulated by the knockdown of Nsd1, indicating that APC2 is a downstream effector of NSD1 in neurons. Nsd1 knockdown in embryonic mouse brains impaired the migration and laminar positioning of cortical neurons, as observed in Apc2-/- mice, and this defect was rescued by the forced expression of Apc2. Thus, APC2 is a crucial target of NSD1, which provides an explanation for the intellectual disability associated with Sotos syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA