Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Bot ; 128(3): 371-381, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34175940

RESUMO

BACKGROUND AND AIMS: The role of deer (family Cervidae) in ecosystem functioning has traditionally been neglected by forest ecologists due to the animal's scarcity in most parts of the northern hemisphere. However, the dramatic rebound in deer populations throughout the 20th century has brought deer browsing to the forefront of forest ecological questioning. Today there is ample evidence that deer affect tree regeneration, understorey plant and animal diversity, and even litter decomposition. However, the mechanisms underlying the effects of deer on forest ecosystems remain unclear. Among others, the relative role of abiotic factors versus biotic interactions (e.g. herbivory) in shaping plant assemblages remains largely unknown. METHODS: We used a large-scale experiment with exclosures distributed along abiotic gradients to understand the role of black-tailed deer (Odocoileus hemionus sitchensis) on the forest understorey on the Haida Gwaii archipelago (western Canada), a unique context where most of the key ecological effects of deer presence have already been intensively studied. KEY RESULTS: Our results demonstrate that 20 years of deer exclusion resulted in a clear increase in vascular plant richness, diversity and cover, and caused a decline in bryophyte cover. Exclusion also unveiled abiotic (i.e. soil water availability and fertility) filtering of plant assemblages that would otherwise have been masked by the impact of abundant deer populations. However, deer exclusion did not lead to an increase in beta diversity, probably because some remnant species had a competitive advantage to regrow after decades of over browsing. CONCLUSIONS: We demonstrated that long-term herbivory by deer can be a dominant factor structuring understorey plant communities that overwhelms abiotic factors. However, while exclosures prove useful to assess the overall effects of large herbivores, the results from our studies at broader scales on the Haida Gwaii archipelago suggest that exclosure experiments should be used cautiously when inferring the mechanisms at work.


Assuntos
Cervos , Ecossistema , Animais , Florestas , Plantas , Árvores
2.
Artigo em Inglês | MEDLINE | ID: mdl-33069817

RESUMO

Psychobiotics are considered among potential avenues for modulating the bidirectional communication between the gastrointestinal tract and central nervous system, defined as the microbiota-gut-brain axis (MGBA). Even though causality has not yet been established, intestinal dysbiosis has emerged as a hallmark of several diseases, including neuropsychiatric disorders (NPDs). The fact that the microbiota and central nervous system are co-developing during the first years of life has provided a paradigm suggesting a potential role of psychobiotics for earlier interventions. Studies in animal models of early-life stress (ELS) have shown that they can counteract the pervasive effects of stress during this crucial developmental period, and rescue behavioral symptoms related to anxiety and depression later in life. In humans, evidence from clinical studies on the efficacy of psychobiotics at improving mental outcomes in most NPDs remain limited, except for major depressive disorder for which more studies are available. Consequently, the beneficial effect of psychobiotics on depression-related outcomes in adults are becoming clearer. While the specific mechanisms at play remain elusive, the effect of psychobiotics are generally considered to involve the hypothalamic-pituitary-adrenal axis, intestinal permeability, and inflammation. It is anticipated that future clinical studies will explore the potential role of psychobiotics at mitigating the risk developing NPDs in vulnerable individuals or in the context of childhood adversity. However, such studies remain challenging at present in terms of design and target populations; the profound impact of stress on the proper development of the MGBA during the first year of life is becoming increasingly recognized, but the trajectories post-ELS in humans and the mechanisms by which stress affects the susceptibility to various NPDs are still ill-defined. As psychobiotics are likely to exert both shared and specific mechanisms, a better definition of target subpopulations would allow to tailor psychobiotics selection by aligning mechanistic properties with known pathophysiological mechanisms or risk factors. Here we review the available evidence from clinical and preclinical studies supporting a role for psychobiotics at ameliorating depression-related outcomes, highlighting the knowledge gaps and challenges associated with conducting longitudinal studies to address outstanding key questions in the field.


Assuntos
Eixo Encéfalo-Intestino/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Probióticos/farmacologia , Animais , Transtorno Depressivo Maior/fisiopatologia , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Sistema Hipófise-Suprarrenal/fisiopatologia
3.
Ecology ; 102(2): e03235, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33098575

RESUMO

Litter decomposition is a key process that allows the recycling of nutrients within ecosystems. In temperate forests, the role of large herbivores in litter decomposition remains a subject of debate. To address this question, we used two litterbag experiments in a quasiexperimental situation resulting from the introduction of Sitka black-tailed deer Odocoileus hemionus sitkensis on forested islands of Haida Gwaii (Canada). We investigated the two main pathways by which deer could modify litter decomposition: change in litter quality and modification of decomposer communities. We found that deer presence significantly reduced litter mass loss after 1 yr, mainly through a reduction in litter quality. This mass loss reflected a 30 and 28% lower loss of carbon (C) and nitrogen (N), respectively. The presence of deer also reduced the ability of decomposers to break down carbon, but not nitrogen. Indeed, litter placed on an island with deer lost 5% less carbon after 1 yr of decomposition than did litter decomposing on an island without deer. This loss in ability to decompose litter in the presence of deer was outweighed by the differences in mass loss associated with the effect of deer on litter quality. Additional effects of feces deposition by deer on the decomposition process were also significant but minor. These results suggest that the effects dramatic continental-scale increases in deer populations may have on broad-scale patterns of C and N cycling deserve closer attention.


Assuntos
Cervos , Ecossistema , Animais , Canadá , Florestas , Nitrogênio , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA