Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(13): 3966-3981, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37317520

RESUMO

TenCirChem is an open-source Python library for simulating variational quantum algorithms for quantum computational chemistry. TenCirChem shows high-performance in the simulation of unitary coupled-cluster circuits, using compact representations of quantum states and excitation operators. Additionally, TenCirChem supports noisy circuit simulation and provides algorithms for variational quantum dynamics. TenCirChem's capabilities are demonstrated through various examples, such as the calculation of the potential energy curve of H2O with a 6-31G(d) basis set using a 34-qubit quantum circuit, the examination of the impact of quantum gate errors on the variational energy of the H2 molecule, and the exploration of the Marcus inverted region for charge transfer rate based on variational quantum dynamics. Furthermore, TenCirChem is capable of running real quantum hardware experiments, making it a versatile tool for both simulation and experimentation in the field of quantum computational chemistry.

2.
Nat Commun ; 13(1): 2453, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508450

RESUMO

This work presents Neural Equivariant Interatomic Potentials (NequIP), an E(3)-equivariant neural network approach for learning interatomic potentials from ab-initio calculations for molecular dynamics simulations. While most contemporary symmetry-aware models use invariant convolutions and only act on scalars, NequIP employs E(3)-equivariant convolutions for interactions of geometric tensors, resulting in a more information-rich and faithful representation of atomic environments. The method achieves state-of-the-art accuracy on a challenging and diverse set of molecules and materials while exhibiting remarkable data efficiency. NequIP outperforms existing models with up to three orders of magnitude fewer training data, challenging the widely held belief that deep neural networks require massive training sets. The high data efficiency of the method allows for the construction of accurate potentials using high-order quantum chemical level of theory as reference and enables high-fidelity molecular dynamics simulations over long time scales.


Assuntos
Simulação de Dinâmica Molecular , Redes Neurais de Computação
3.
PLoS One ; 16(7): e0253612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34283864

RESUMO

The rise of machine learning (ML) has created an explosion in the potential strategies for using data to make scientific predictions. For physical scientists wishing to apply ML strategies to a particular domain, it can be difficult to assess in advance what strategy to adopt within a vast space of possibilities. Here we outline the results of an online community-powered effort to swarm search the space of ML strategies and develop algorithms for predicting atomic-pairwise nuclear magnetic resonance (NMR) properties in molecules. Using an open-source dataset, we worked with Kaggle to design and host a 3-month competition which received 47,800 ML model predictions from 2,700 teams in 84 countries. Within 3 weeks, the Kaggle community produced models with comparable accuracy to our best previously published 'in-house' efforts. A meta-ensemble model constructed as a linear combination of the top predictions has a prediction accuracy which exceeds that of any individual model, 7-19x better than our previous state-of-the-art. The results highlight the potential of transformer architectures for predicting quantum mechanical (QM) molecular properties.


Assuntos
Ciência do Cidadão/métodos , Ciência do Cidadão/tendências , Previsões/métodos , Algoritmos , Participação da Comunidade , Humanos , Aprendizado de Máquina/tendências , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Modelos Estatísticos
4.
J Phys Chem Lett ; 10(10): 2313-2319, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30999751

RESUMO

We show that strong cation-anion interactions in a wide range of lithium-salt/ionic liquid mixtures result in a negative lithium transference number, using molecular dynamics simulations and rigorous concentrated solution theory. This behavior fundamentally deviates from that obtained using self-diffusion coefficient analysis and explains well recent experimental electrophoretic nuclear magnetic resonance measurements, which account for ion correlations. We extend these findings to several ionic liquid compositions. We investigate the degree of spatial ionic coordination employing single-linkage cluster analysis, unveiling asymmetrical anion-cation clusters. We formulate a way to compute the effective lithium charge and show that lithium-containing clusters carry a negative charge over a remarkably wide range of compositions and concentrations. This finding has significant implications for the overall performance of battery cells based on ionic liquid electrolytes. It also provides a rigorous prediction recipe and design protocol for optimizing transport properties in next-generation highly correlated electrolytes.

5.
Nat Commun ; 10(1): 3360, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350394

RESUMO

Electrochemical stability windows of electrolytes largely determine the limitations of operating regimes of lithium-ion batteries, but the degradation mechanisms are difficult to characterize and poorly understood. Using computational quantum chemistry to investigate the oxidative decomposition that govern voltage stability of multi-component organic electrolytes, we find that electrolyte decomposition is a process involving the solvent and the salt anion and requires explicit treatment of their coupling. We find that the ionization potential of the solvent-anion system is often lower than that of the isolated solvent or the anion. This mutual weakening effect is explained by the formation of the anion-solvent charge-transfer complex, which we study for 16 anion-solvent combinations. This understanding of the oxidation mechanism allows the formulation of a simple predictive model that explains experimentally observed trends in the onset voltages of degradation of electrolytes near the cathode. This model opens opportunities for rapid rational design of stable electrolytes for high-energy batteries.

6.
ACS Macro Lett ; 7(4): 504-508, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35619350

RESUMO

Quasi-elastic neutron scattering experiments on mixtures of poly(ethylene oxide) and lithium bis(trifluoromethane)sulfonimide salt, a standard polymer electrolyte, led to the quantification of the effect of salt on segmental dynamics in the 1-10 Å length scale. The monomeric friction coefficient characterizing segmental dynamics on these length scales increases exponentially with salt concentration. More importantly, we find that this change in monomeric friction alone is responsible for all of the observed nonlinearity in the dependence of ionic conductivity on salt concentration. Our analysis leads to a surprisingly simple relationship between macroscopic ion transport in polymers and dynamics at monomeric length scales.

7.
Adv Mater ; 26(27): 4704-10, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24862543

RESUMO

The power conversion efficiency of solar cells based on copper (I) oxide (Cu2 O) is enhanced by atomic layer deposition of a thin gallium oxide (Ga2 O3 ) layer. By improving band-alignment and passivating interface defects, the device exhibits an open-circuit voltage of 1.20 V and an efficiency of 3.97%, showing potential of over 7% efficiency.


Assuntos
Cobre/química , Fontes de Energia Elétrica , Gálio/química , Energia Solar , Soluções Tampão , Modelos Moleculares , Conformação Molecular
8.
Nat Commun ; 5: 3011, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24385050

RESUMO

Room-temperature infrared sub-band gap photoresponse in silicon is of interest for telecommunications, imaging and solid-state energy conversion. Attempts to induce infrared response in silicon largely centred on combining the modification of its electronic structure via controlled defect formation (for example, vacancies and dislocations) with waveguide coupling, or integration with foreign materials. Impurity-mediated sub-band gap photoresponse in silicon is an alternative to these methods but it has only been studied at low temperature. Here we demonstrate impurity-mediated room-temperature sub-band gap photoresponse in single-crystal silicon-based planar photodiodes. A rapid and repeatable laser-based hyperdoping method incorporates supersaturated gold dopant concentrations on the order of 10(20) cm(-3) into a single-crystal surface layer ~150 nm thin. We demonstrate room-temperature silicon spectral response extending to wavelengths as long as 2,200 nm, with response increasing monotonically with supersaturated gold dopant concentration. This hyperdoping approach offers a possible path to tunable, broadband infrared imaging using silicon at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA