Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 552(7683): 116-120, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29186113

RESUMO

Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Reparo de Erro de Pareamento de DNA/genética , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/patologia , Animais , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína 1 Homóloga a MutL/deficiência , Proteína 1 Homóloga a MutL/genética , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Evasão Tumoral/genética , Evasão Tumoral/imunologia
2.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500607

RESUMO

BRAF is a serine/threonine kinase frequently mutated in human cancers. BRAFV600E mutated protein is targeted through the use of kinase inhibitors which are approved for the treatment of melanoma; however, their long-term efficacy is hampered by resistance mechanisms. The PROTAC-induced degradation of BRAFV600E has been proposed as an alternative strategy to avoid the onset of resistance. In this study, we designed a series of compounds where the BRAF kinase inhibitor encorafenib was conjugated to pomalidomide through different linkers. The synthesized compounds maintained their ability to inhibit the kinase activity of mutated BRAF with IC50 values in the 40-88 nM range. Selected compounds inhibited BRAFV600E signaling and cellular proliferation of A375 and Colo205 tumor cell lines. Compounds 10 and 11, the most active of the series, were not able to induce degradation of mutated BRAF. Docking and molecular dynamic studies, conducted in comparison with the efficient BRAF degrader P5B, suggest that a different orientation of the linker bearing the pomalidomide substructure, together with a decreased mobility of the solvent-exposed part of the conjugates, could explain this behavior.


Assuntos
Quimera de Direcionamento de Proteólise , Proteínas Proto-Oncogênicas B-raf , Humanos , Sulfonamidas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Mutação
3.
Mol Ther ; 26(8): 2008-2018, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29929788

RESUMO

We previously demonstrated that miR-214 is upregulated in malignant melanomas and triple-negative breast tumors and promotes metastatic dissemination by affecting a complex pathway including the anti-metastatic miR-148b. Importantly, tumor dissemination could be reduced by blocking miR-214 function or increasing miR-148b expression or by simultaneous interventions. Based on this evidence, with the intent to explore the role of miR-214 as a target for therapy, we evaluated the capability of new chemically modified anti-miR-214, R97/R98, to inhibit miR-214 coordinated metastatic traits. Relevantly, when melanoma or breast cancer cells were transfected with R97/R98, anti-miR-214 reduced miR-214 expression and impaired transendothelial migration were observed. Noteworthy, when the same cells were injected in the tail vein of mice, cell extravasation and metastatic nodule formation in lungs were strongly reduced. Thus, suggesting that R97/R98 anti-miR-214 oligonucleotides were able to inhibit tumor cell escaping through the endothelium. More importantly, when R97/R98 anti-miR-214 compounds were systemically delivered to mice carrying melanomas or breast or neuroendocrine pancreatic cancers, a reduced number of circulating tumor cells and lung or lymph node metastasis formation were detected. Similar results were also obtained when AAV8-miR-214 sponges were used in neuroendocrine pancreatic tumors. Based on this evidence, we propose miR-214 as a promising target for anti-metastatic therapies.


Assuntos
Antagomirs/administração & dosagem , MicroRNAs/genética , Neoplasias/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos , Animais , Antagomirs/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Camundongos , MicroRNAs/antagonistas & inibidores , Metástase Neoplásica/tratamento farmacológico , Neoplasias/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Cancer ; 143(7): 1774-1785, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29693242

RESUMO

MET, a master gene sustaining "invasive growth," is a relevant target for cancer precision therapy. In the vast majority of tumors, wild-type MET behaves as a "stress-response" gene and relies on the ligand (HGF) to sustain cell "scattering," invasive growth and apoptosis protection (oncogene "expedience"). In this context, concomitant targeting of MET and HGF could be crucial to reach effective inhibition. To test this hypothesis, we combined an anti-MET antibody (MvDN30) inducing "shedding" (i.e., removal of MET from the cell surface), with a "decoy" (i.e., the soluble extracellular domain of the MET receptor) endowed with HGF-sequestering ability. To avoid antibody/decoy interaction-and subsequent neutralization-we identified a single aminoacid in the extracellular domain of MET-lysine 842-that is critical for MvDN30 binding and engineered the corresponding recombinant decoyMET (K842E). DecoyMETK842E retains the ability to bind HGF with high affinity and inhibits HGF-induced MET phosphorylation. In HGF-dependent cellular models, MvDN30 antibody and decoyMETK842E used in combination cooperate in restraining invasive growth, and synergize in blocking cancer cell "scattering." The antibody and the decoy unbridle apoptosis of colon cancer stem cells grown in vitro as spheroids. In a preclinical model, built by orthotopic transplantation of a human pancreatic carcinoma in SCID mice engineered to express human HGF, concomitant treatment with antibody and decoy significantly reduces metastatic spread. The data reported indicate that vertical targeting of the MET/HGF axis results in powerful inhibition of ligand-dependent MET activation, providing proof of concept in favor of combined target therapy of MET "expedience."


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias do Colo/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Ligantes , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Proto-Oncogênicas c-met/imunologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Arterioscler Thromb Vasc Biol ; 37(9): 1710-1721, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28729362

RESUMO

OBJECTIVE: Molecular pathways governing blood vessel patterning are vital to vertebrate development. Because of their ability to counteract proangiogenic factors, antiangiogenic secreted Sema3 (class 3 semaphorins) control embryonic vascular morphogenesis. However, if and how Sema3 may play a role in the control of extraembryonic vascular development is presently unknown. APPROACH AND RESULTS: By characterizing genetically modified mice, here, we show that surprisingly Sema3F acts instead as a selective extraembryonic, but not intraembryonic proangiogenic cue. Both in vivo and in vitro, in visceral yolk sac epithelial cells, Sema3F signals to inhibit the phosphorylation-dependent degradation of Myc, a transcription factor that drives the expression of proangiogenic genes, such as the microRNA cluster 17/92. In Sema3f-null yolk sacs, the transcription of Myc-regulated microRNA 17/92 cluster members is impaired, and the synthesis of Myc and microRNA 17/92 foremost antiangiogenic target Thbs1 (thrombospondin 1) is increased, whereas Vegf (vascular endothelial growth factor) signaling is inhibited in yolk sac endothelial cells. Consistently, exogenous recombinant Sema3F inhibits the phosphorylation-dependent degradation of Myc and the synthesis of Thbs1 in mouse F9 teratocarcinoma stem cells that were in vitro differentiated in visceral yolk sac epithelial cells. Sema3f-/- mice placentas are also highly anemic and abnormally vascularized. CONCLUSIONS: Sema3F functions as an unconventional Sema3 that promotes extraembryonic angiogenesis by inhibiting the Myc-regulated synthesis of Thbs1 in visceral yolk sac epithelial cells.


Assuntos
Células Epiteliais/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/metabolismo , Placenta/irrigação sanguínea , Saco Vitelino/irrigação sanguínea , Animais , Linhagem Celular Tumoral , Células-Tronco de Carcinoma Embrionário/metabolismo , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Idade Gestacional , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fenótipo , Fosforilação , Gravidez , Proteólise , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Trombospondina 1/genética , Trombospondina 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Mol Cell Proteomics ; 14(3): 621-34, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25573745

RESUMO

Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.


Assuntos
Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Células Endoteliais/metabolismo , Ácidos Graxos/metabolismo , Metaboloma , Modelos Biológicos , Proteômica/métodos , Trifosfato de Adenosina/metabolismo , Animais , Células Endoteliais/citologia , Compostos de Epóxi/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Técnicas In Vitro , Camundongos , Oxirredução , Consumo de Oxigênio , Permeabilidade
7.
Mol Cell Proteomics ; 12(12): 3599-611, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23979707

RESUMO

Proteomics has been successfully used for cell culture on dishes, but more complex cellular systems have proven to be challenging and so far poorly approached with proteomics. Because of the complexity of the angiogenic program, we still do not have a complete understanding of the molecular mechanisms involved in this process, and there have been no in depth quantitative proteomic studies. Plating endothelial cells on matrigel recapitulates aspects of vessel growth, and here we investigate this mechanism by using a spike-in SILAC quantitative proteomic approach. By comparing proteomic changes in primary human endothelial cells morphogenesis on matrigel to general adhesion mechanisms in cells spreading on culture dish, we pinpoint pathways and proteins modulated by endothelial cells. The cell-extracellular matrix adhesion proteome depends on the adhesion substrate, and a detailed proteomic profile of the extracellular matrix secreted by endothelial cells identified CLEC14A as a matrix component, which binds to MMRN2. We verify deregulated levels of these proteins during tumor angiogenesis in models of multistage carcinogenesis. This is the most in depth quantitative proteomic study of endothelial cell morphogenesis, which shows the potential of applying high accuracy quantitative proteomics to in vitro models of vessel growth to shed new light on mechanisms that accompany pathological angiogenesis. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000359.


Assuntos
Antígenos de Superfície/genética , Biomarcadores Tumorais/genética , Moléculas de Adesão Celular/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lectinas Tipo C/genética , Glicoproteínas de Membrana/genética , Animais , Antígenos de Superfície/metabolismo , Biomarcadores Tumorais/metabolismo , Isótopos de Carbono , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Colágeno/química , Combinação de Medicamentos , Matriz Extracelular/química , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Marcação por Isótopo , Laminina/química , Lectinas Tipo C/metabolismo , Espectrometria de Massas , Glicoproteínas de Membrana/metabolismo , Camundongos , Morfogênese/genética , Neovascularização Patológica , Cultura Primária de Células , Ligação Proteica , Proteoglicanas/química , Proteômica , Transdução de Sinais
8.
Proc Natl Acad Sci U S A ; 109(6): E353-9, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22203991

RESUMO

Carcinomas are comprised of transformed epithelial cells that are supported in their growth by a dedicated neovasculature. How the genetic milieu of the epithelial compartment influences tumor angiogenesis is largely unexplored. Drugs targeted to mutant cancer genes may act not only on tumor cells but also, directly or indirectly, on the surrounding stroma. We investigated the role of the BRAF(V600E) oncogene in tumor/vessel crosstalk and analyzed the effect of the BRAF inhibitor PLX4720 on tumor angiogenesis. Knock-in of the BRAF(V600E) allele into the genome of human epithelial cells triggered their angiogenic response. In cancer cells harboring oncogenic BRAF, the inhibitor PLX4720 switches off the ERK pathway and inhibits the expression of proangiogenic molecules. In tumor xenografts harboring the BRAF(V600E), PLX4720 extensively modifies the vascular network causing abrogation of hypoxia. Overall, our results provide a functional link between oncogenic BRAF and angiogenesis. Furthermore, they indicate how the tumor vasculature can be "indirectly" besieged through targeting of a genetic lesion to which the cancer cells are addicted.


Assuntos
Terapia de Alvo Molecular , Neoplasias/irrigação sanguínea , Neoplasias/enzimologia , Neovascularização Patológica/enzimologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Alelos , Indutores da Angiogênese/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Bevacizumab , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Galinhas , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Citostáticos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Técnicas de Introdução de Genes , Humanos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Mutação/genética , Necrose , Neoplasias/patologia , Neovascularização Patológica/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Immunol ; 188(8): 4081-92, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22442441

RESUMO

The axon guidance cues semaphorins (Semas) and their receptors plexins have been shown to regulate both physiological and pathological angiogenesis. Sema4A plays an important role in the immune system by inducing T cell activation, but to date, the role of Sema4A in regulating the function of macrophages during the angiogenic and inflammatory processes remains unclear. In this study, we show that macrophage activation by TLR ligands LPS and polyinosinic-polycytidylic acid induced a time-dependent increase of Sema4A and its receptors PlexinB2 and PlexinD1. Moreover, in a thioglycollate-induced peritonitis mouse model, Sema4A was detected in circulating Ly6C(high) inflammatory monocytes and peritoneal macrophages. Acting via PlexinD1, exogenous Sema4A strongly increased macrophage migration. Of note, Sema4A-activated PlexinD1 enhanced the expression of vascular endothelial growth factor-A, but not of inflammatory chemokines. Sema4A-stimulated macrophages were able to activate vascular endothelial growth factor receptor-2 and the PI3K/serine/threonine kinase Akt pathway in endothelial cells and to sustain their migration and in vivo angiogenesis. Remarkably, in an in vivo cardiac ischemia/reperfusion mouse model, Sema4A was highly expressed in macrophages recruited at the injured area. We conclude that Sema4A activates a specialized and restricted genetic program in macrophages able to sustain angiogenesis and participates in their recruitment and activation in inflammatory injuries.


Assuntos
Macrófagos Peritoneais/imunologia , Neovascularização Fisiológica , Semaforinas/fisiologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Animais , Movimento Celular , Quimiocinas/biossíntese , Quimiocinas/imunologia , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Macrófagos Peritoneais/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Miocárdio/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Peritonite/imunologia , Peritonite/metabolismo , Peritonite/patologia , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Semaforinas/farmacologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Mol Oncol ; 18(6): 1552-1570, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38348572

RESUMO

Serine/threonine-protein kinase B-raf (BRAF) mutations are found in 8-15% of colorectal cancer patients and identify a subset of tumors with poor outcome in the metastatic setting. We have previously reported that BRAF-mutant human cells display a high rate of protein production, causing proteotoxic stress, and are selectively sensitive to the proteasome inhibitors bortezomib and carfilzomib. In this work, we tested whether carfilzomib could restrain the growth of BRAF-mutant colorectal tumors not only by targeting cancer cells directly, but also by promoting an immune-mediated antitumor response. In human and mouse colorectal cancer cells, carfilzomib triggered robust endoplasmic reticulum stress and autophagy, followed by the emission of immunogenic-damage-associated molecules. Intravenous administration of carfilzomib delayed the growth of BRAF-mutant murine tumors and mobilized the danger-signal proteins calreticulin and high mobility group box 1 (HMGB1). Analyses of drug-treated samples revealed increased intratumor recruitment of activated cytotoxic T cells and natural killers, concomitant with the downregulation of forkhead box protein P3 (Foxp3)+ T-cell surface glycoprotein CD4 (CD4)+ T cells, indicating that carfilzomib promotes reshaping of the immune microenvironment of BRAF-mutant murine colorectal tumors. These results will inform the design of clinical trials in BRAF-mutant colorectal cancer patients.


Assuntos
Neoplasias Colorretais , Mutação , Oligopeptídeos , Proteínas Proto-Oncogênicas B-raf , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Humanos , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Camundongos , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Camundongos Endogâmicos C57BL
11.
J Exp Clin Cancer Res ; 41(1): 266, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056393

RESUMO

BACKGROUND: Colorectal cancer (CRC) remains largely incurable when diagnosed at the metastatic stage. Despite some advances in precision medicine for this disease in recent years, new molecular targets, as well as prognostic/predictive markers, are highly needed. Neuroligin 1 (NLGN1) is a transmembrane protein that interacts at the synapse with the tumor suppressor adenomatous polyposis Coli (APC), which is heavily involved in the pathogenesis of CRC and is a key player in the WNT/ß-catenin pathway. METHODS: After performing expression studies of NLGN1 on human CRC samples, in this paper we used in vitro and in vivo approaches to study CRC cells extravasation and metastasis formation capabilities. At the molecular level, the functional link between APC and NLGN1 in the cancer context was studied. RESULTS: Here we show that NLGN1 is expressed in human colorectal tumors, including clusters of aggressive migrating (budding) single tumor cells and vascular emboli. We found that NLGN1 promotes CRC cells crossing of an endothelial monolayer (i.e. Trans-Endothelial Migration or TEM) in vitro, as well as cell extravasation/lung invasion and differential organ metastatization in two mouse models. Mechanistically, NLGN1 promotes APC localization to the cell membrane and co-immunoprecipitates with some isoforms of this protein stimulates ß-catenin translocation to the nucleus, upregulates mesenchymal markers and WNT target genes and induces an "EMT phenotype" in CRC cell lines CONCLUSIONS: In conclusion, we have uncovered a novel modulator of CRC aggressiveness which impacts on a critical pathogenetic pathway of this disease, and may represent a novel therapeutic target, with the added benefit of carrying over substantial knowledge from the neurobiology field.


Assuntos
Moléculas de Adesão Celular Neuronais , Neoplasias Colorretais , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
12.
Nat Commun ; 13(1): 4188, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858913

RESUMO

The formation of a functional blood vessel network relies on the ability of endothelial cells (ECs) to dynamically rearrange their adhesive contacts in response to blood flow and guidance cues, such as vascular endothelial growth factor-A (VEGF-A) and class 3 semaphorins (SEMA3s). Neuropilin 1 (NRP1) is essential for blood vessel development, independently of its ligands VEGF-A and SEMA3, through poorly understood mechanisms. Grounding on unbiased proteomic analysis, we report here that NRP1 acts as an endocytic chaperone primarily for adhesion receptors on the surface of unstimulated ECs. NRP1 localizes at adherens junctions (AJs) where, interacting with VE-cadherin, promotes its basal internalization-dependent turnover and favors vascular permeability initiated by histamine in both cultured ECs and mice. We identify a splice variant of tryptophanyl-tRNA synthetase (mini-WARS) as an unconventionally secreted extracellular inhibitory ligand of NRP1 that, by stabilizing it at the AJs, slows down both VE-cadherin turnover and histamine-elicited endothelial leakage. Thus, our work shows a role for NRP1 as a major regulator of AJs plasticity and reveals how mini-WARS acts as a physiological NRP1 inhibitory ligand in the control of VE-cadherin endocytic turnover and vascular permeability.


Assuntos
Neuropilina-1 , Triptofano-tRNA Ligase , Junções Aderentes/metabolismo , Animais , Antígenos CD , Caderinas/genética , Permeabilidade Capilar , Células Endoteliais/metabolismo , Histamina , Ligantes , Camundongos , Neuropilina-1/genética , Neuropilina-1/metabolismo , Proteômica , Triptofano-tRNA Ligase/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077801

RESUMO

Background: The pancreatic ductal adenocarcinoma (PDAC) microenvironment is highly fibrotic and hypoxic, with poor immune cell infiltration. Recently, we showed that nucleolin (NCL) inhibition normalizes tumour vessels and impairs PDAC growth. Methods: Immunocompetent mouse models of PDAC were treated by the pseudopeptide N6L, which selectively inhibits NCL. Tumour-infiltrating immune cells and changes in the tumour microenvironment were analysed. Results: N6L reduced the proportion of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and increased tumour-infiltrated T lymphocytes (TILs) with an activated phenotype. Low-dose anti-VEGFR2 treatment normalized PDAC vessels but did not modulate the immune suppressive microenvironment. RNAseq analysis of N6L-treated PDAC tumours revealed a reduction of cancer-associated fibroblast (CAF) expansion in vivo and in vitro. Notably, N6L treatment decreased IL-6 levels both in tumour tissues and in serum. Treating mPDAC by an antibody blocking IL-6 reduced the proportion of Tregs and MDSCs and increased the amount of TILs, thus mimicking the effects of N6L. Conclusions: These results demonstrate that NCL inhibition blocks the amplification of lymphoid and myeloid immunosuppressive cells and promotes T cell activation in PDAC through a new mechanism of action dependent on the direct inhibition of the tumoral stroma.

15.
Cancer Drug Resist ; 4(1): 192-207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35582009

RESUMO

Aim: Resistance to chemotherapy is a major limiting factor that hamper the effectiveness of anticancer therapies. Doxorubicin is an antineoplastic agent used in the treatment of a wide range of cancers. However, it presents several limitations such as dose-dependent cardiotoxicity, lack of selectivity for tumor cells, and induced cell resistance. Nanotechnology represents a promising strategy to avoid these drawbacks. In this work, new albumin-based nanoparticles were formulated for the intracellular delivery of doxorubicin with the aim to overcome cancer drug resistance. Methods: Glycol chitosan-coated and uncoated albumin nanoparticles were prepared with a tuned coacervation method. The nanoformulations were in vitro characterized evaluating the physicochemical parameters, morphology, and in vitro release kinetics. Biological assays were performed on A2780res and EMT6 cells from human ovarian carcinoma and mouse mammary cell lines resistant for doxorubicin, respectively. Results: Cell viability assays showed that nanoparticles have higher cytotoxicity than the free drug. Moreover, at low concentrations, both doxorubicin-loaded nanoparticles inhibited the cell colony formation in a greater extent than drug solution. In addition, the cell uptake of the different formulations was investigated by confocal microscopy and by the HPLC determination of doxorubicin intracellular accumulation. The nanoparticles were rapidly internalized in greater extent compared to the free drug. Conclusion: Based on these results, doxorubicin-loaded albumin nanoparticles might represent a novel platform to overcome the mechanism of drug resistance in cancer cell lines and improve the drug efficacy.

16.
Biomedicines ; 10(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35052731

RESUMO

Recently, we demonstrated that inducible T-cell costimulator (ICOS) shares its unique ligand (ICOSL) with osteopontin (OPN), and OPN/ICOSL binding promotes tumor metastasis and angiogenesis in the 4T1 breast cancer model. Literature showed that OPN promotes melanoma metastasis by suppressing T-cell activation and recruiting myeloid suppressor cells (MDSC). On the opposite, ICOS/ICOSL interaction usually sustains an antitumor response. Here, we engineered murine B16F10 melanoma cells, by transfecting or silencing ICOSL. In vitro data showed that loss of ICOSL favors anchorage-independent growth and induces more metastases in vivo, compared to ICOSL expressing cells. To dissect individual roles of the three molecules, we compared data from C57BL/6 with those from OPN-KO, ICOS-KO, and ICOSL-KO mice, missing one partner at a time. We found that OPN produced by the tumor microenvironment (TME) favors the metastasis by interacting with stromal ICOSL. This activity is dominantly inhibited by ICOS expressed on TME by promoting Treg expansion. Importantly, we also show that OPN and ICOSL highly interact in human melanoma metastases compared to primary tumors. Interfering with this binding may be explored in immunotherapy either for nonresponding or patients resistant to conventional therapies.

17.
J Leukoc Biol ; 108(2): 601-616, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32108378

RESUMO

Extracellular vesicles (EVs) have attracted great interest as contributors to autoimmune disease (AD) pathogenesis, owing to their immunomodulatory potential; they may also play a role in triggering tolerance disruption, by delivering auto-antigens. EVs are released by almost all cell types, and afford paracrine or distal cell communication, functioning as biological carriers of active molecules including lipids, proteins, and nucleic acids. Depending on stimuli from the external microenvironment or on their cargo, EVs can promote or suppress immune responses. ADs are triggered by inappropriate immune-system activation against the self, but their precise etiology is still poorly understood. Accumulating evidence indicates that lifestyle and diet have a strong impact on their clinical onset and development. However, to date the mechanisms underlying AD pathogenesis are not fully clarified, and reliable markers, which would provide early prediction and disease progression monitoring, are lacking. In this connection, EVs have recently been indicated as a promising source of AD biomarkers. Although EV isolation is currently based on differential centrifugation or density-gradient ultracentrifugation, the resulting co-isolation of contaminants (i.e., protein aggregates), and the pooling of all EVs in one sample, limit this approach to abundantly-expressed EVs. Flow cytometry is one of the most promising methods for detecting EVs as biomarkers, and may have diagnostic applications. Furthermore, very recent findings describe a new method for identifying and sorting EVs by flow cytometry from freshly collected body fluids, based on specific EV surface markers.


Assuntos
Doenças Autoimunes/etiologia , Doenças Autoimunes/metabolismo , Biomarcadores , Suscetibilidade a Doenças , Vesículas Extracelulares/metabolismo , Animais , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/tratamento farmacológico , Comunicação Celular , Citometria de Fluxo , Humanos , Imunomodulação , Especificidade de Órgãos
18.
Mol Cancer Ther ; 19(12): 2476-2489, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33082275

RESUMO

Antiretrovirals belonging to the human immunodeficiency virus (HIV) protease inhibitor (HIV-PI) class exert inhibitory effects across several cancer types by targeting tumor cells and its microenvironment. Cervical carcinoma represents a leading cause of morbidity and mortality, particularly in women doubly infected with high-risk human papillomaviruses (HR-HPV) and HIV; of note, combined antiretroviral therapy has reduced cervical carcinoma onset and progression in HIV-infected women. We evaluated the effectiveness and mechanism(s) of action of HIV-PI against cervical carcinoma using a transgenic model of HR-HPV-induced estrogen-promoted cervical carcinoma (HPV16/E2) and found that treatment of mice with ritonavir-boosted HIV-PI, including indinavir, saquinavir, and lopinavir, blocked the growth and promoted the regression of murine cervical carcinoma. This was associated with inhibition of tumor angiogenesis, coupled to downregulation of matrix metalloproteinase (MMP)-9, reduction of VEGF/VEGFR2 complex, and concomitant upregulation of tissue inhibitor of metalloproteinase-3 (TIMP-3). HIV-PI also promoted deposition of collagen IV at the epithelial and vascular basement membrane and normalization of both vessel architecture and functionality. In agreement with this, HIV-PI reduced tumor hypoxia and enhanced the delivery and antitumor activity of conventional chemotherapy. Remarkably, TIMP-3 expression gradually decreased during progression of human dysplastic lesions into cervical carcinoma. This study identified the MMP-9/VEGF proangiogenic axis and its modulation by TIMP-3 as novel HIV-PI targets for the blockade of cervical intraepithelial neoplasia/cervical carcinoma development and invasiveness and the normalization of tumor vessel functions. These findings may lead to new therapeutic indications of HIV-PI to treat cervical carcinoma and other tumors in either HIV-infected or uninfected patients.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Inibidores da Protease de HIV/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Inibidor Tecidual de Metaloproteinase-3/agonistas , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Papillomavirus Humano 16 , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/etiologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
JCI Insight ; 5(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33004686

RESUMO

Engineering T cells to express chimeric antigen receptors (CARs) specific for antigens on hematological cancers has yielded remarkable clinical responses, but with solid tumors, benefit has been more limited. This may reflect lack of suitable target antigens, immune evasion mechanisms in malignant cells, and/or lack of T cell infiltration into tumors. An alternative approach, to circumvent these problems, is targeting the tumor vasculature rather than the malignant cells directly. CLEC14A is a glycoprotein selectively overexpressed on the vasculature of many solid human cancers and is, therefore, of considerable interest as a target antigen. Here, we generated CARs from 2 CLEC14A-specific antibodies and expressed them in T cells. In vitro studies demonstrated that, when exposed to their target antigen, these engineered T cells proliferate, release IFN-γ, and mediate cytotoxicity. Infusing CAR engineered T cells into healthy mice showed no signs of toxicity, yet these T cells targeted tumor tissue and significantly inhibited tumor growth in 3 mouse models of cancer (Rip-Tag2, mPDAC, and Lewis lung carcinoma). Reduced tumor burden also correlated with significant loss of CLEC14A expression and reduced vascular density within malignant tissues. These data suggest the tumor vasculature can be safely and effectively targeted with CLEC14A-specific CAR T cells, offering a potent and widely applicable therapy for cancer.


Assuntos
Carcinoma Pulmonar de Lewis/prevenção & controle , Carcinoma Ductal Pancreático/prevenção & controle , Moléculas de Adesão Celular/metabolismo , Imunoterapia Adotiva/métodos , Lectinas Tipo C/metabolismo , Neovascularização Patológica/prevenção & controle , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Moléculas de Adesão Celular/genética , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Lectinas Tipo C/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/imunologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/prevenção & controle
20.
Commun Biol ; 3(1): 615, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106594

RESUMO

ICOSL/ICOS are costimulatory molecules pertaining to immune checkpoints; their binding transduces signals having anti-tumor activity. Osteopontin (OPN) is here identified as a ligand for ICOSL. OPN binds a different domain from that used by ICOS, and the binding induces a conformational change in OPN, exposing domains that are relevant for its functions. Here we show that in vitro, ICOSL triggering by OPN induces cell migration, while inhibiting anchorage-independent cell growth. The mouse 4T1 breast cancer model confirms these data. In vivo, OPN-triggering of ICOSL increases angiogenesis and tumor metastatization. The findings shed new light on ICOSL function and indicate that another partner beside ICOS may be involved; they also provide a rationale for developing alternative therapeutic approaches targeting this molecular trio.


Assuntos
Movimento Celular/fisiologia , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Osteopontina/metabolismo , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/prevenção & controle , Células CHO , Linhagem Celular Tumoral , Cricetulus , Feminino , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Camundongos , Metástase Neoplásica/prevenção & controle , Neoplasias Experimentais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA