Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 183(2): 474-489.e17, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035451

RESUMO

Mg2+ is the most abundant divalent cation in metazoans and an essential cofactor for ATP, nucleic acids, and countless metabolic enzymes. To understand how the spatio-temporal dynamics of intracellular Mg2+ (iMg2+) are integrated into cellular signaling, we implemented a comprehensive screen to discover regulators of iMg2+ dynamics. Lactate emerged as an activator of rapid release of Mg2+ from endoplasmic reticulum (ER) stores, which facilitates mitochondrial Mg2+ (mMg2+) uptake in multiple cell types. We demonstrate that this process is remarkably temperature sensitive and mediated through intracellular but not extracellular signals. The ER-mitochondrial Mg2+ dynamics is selectively stimulated by L-lactate. Further, we show that lactate-mediated mMg2+ entry is facilitated by Mrs2, and point mutations in the intermembrane space loop limits mMg2+ uptake. Intriguingly, suppression of mMg2+ surge alleviates inflammation-induced multi-organ failure. Together, these findings reveal that lactate mobilizes iMg2+ and links the mMg2+ transport machinery with major metabolic feedback circuits and mitochondrial bioenergetics.


Assuntos
Retículo Endoplasmático/metabolismo , Ácido Láctico/metabolismo , Magnésio/metabolismo , Animais , Células COS , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Chlorocebus aethiops , Retículo Endoplasmático/fisiologia , Feminino , Células HeLa , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo
2.
J Biol Chem ; 298(9): 102246, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35835217

RESUMO

Proximal tubular epithelial cells respond to transforming growth factor ß (TGFß) to synthesize collagen I (α2) during renal fibrosis. The oncoprotein DJ-1 has previously been shown to promote tumorigenesis and prevent apoptosis of dopaminergic neurons; however, its role in fibrosis signaling is unclear. Here, we show TGFß-stimulation increased expression of DJ-1, which promoted noncanonical mTORC1 and mTORC2 activities. We show DJ-1 augmented the phosphorylation/activation of PKCßII, a direct substrate of mTORC2. In addition, coimmunoprecipitation experiments revealed association of DJ-1 with Raptor and Rictor, exclusive subunits of mTORC1 and mTORC2, respectively, as well as with mTOR kinase. Interestingly, siRNAs against DJ-1 blocked TGFß-stimulated expression of collagen I (α2), while expression of DJ-1 increased expression of this protein. In addition, expression of dominant negative PKCßII and siRNAs against PKCßII significantly inhibited TGFß-induced collagen I (α2) expression. In fact, constitutively active PKCßII abrogated the effect of siRNAs against DJ-1, suggesting a role of PKCßII downstream of this oncoprotein. Moreover, we demonstrate expression of collagen I (α2) stimulated by DJ-1 and its target PKCßII is dependent on the transcription factor hypoxia-inducible factor 1α (Hif1α). Finally, we show in the renal cortex of diabetic rats that increased TGFß was associated with enhanced expression of DJ-1 and activation of mTOR and PKCßII, concomitant with increased Hif1α and collagen I (α2). Overall, we identified that DJ-1 affects TGFß-induced expression of collagen I (α2) via an mTOR-, PKCßII-, and Hif1α-dependent mechanism to regulate renal fibrosis.


Assuntos
Colágeno Tipo I , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Subunidade alfa do Fator 1 Induzível por Hipóxia , Rim , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Proteínas Oncogênicas , Proteína Desglicase DJ-1 , Animais , Colágeno Tipo I/biossíntese , Colágeno Tipo I/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fibrose , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Proteína Quinase C beta/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
3.
J Biol Chem ; 295(42): 14262-14278, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32732288

RESUMO

Interaction of transforming growth factor-ß (TGFß)-induced canonical signaling with the noncanonical kinase cascades regulates glomerular hypertrophy and matrix protein deposition, which are early features of glomerulosclerosis. However, the specific target downstream of the TGFß receptor involved in the noncanonical signaling is unknown. Here, we show that TGFß increased the catalytic loop phosphorylation of platelet-derived growth factor receptor ß (PDGFRß), a receptor tyrosine kinase expressed abundantly in glomerular mesangial cells. TGFß increased phosphorylation of the PI 3-kinase-interacting Tyr-751 residue of PDGFRß, thus activating Akt. Inhibition of PDGFRß using a pharmacological inhibitor and siRNAs blocked TGFß-stimulated phosphorylation of proline-rich Akt substrate of 40 kDa (PRAS40), an intrinsic inhibitory component of mTORC1, and prevented activation of mTORC1 in the absence of any effect on Smad 2/3 phosphorylation. Expression of constitutively active myristoylated Akt reversed the siPDGFRß-mediated inhibition of mTORC1 activity; however, co-expression of the phospho-deficient mutant of PRAS40 inhibited the effect of myristoylated Akt, suggesting a definitive role of PRAS40 phosphorylation in mTORC1 activation downstream of PDGFRß in mesangial cells. Additionally, we demonstrate that PDGFRß-initiated phosphorylation of PRAS40 is required for TGFß-induced mesangial cell hypertrophy and fibronectin and collagen I (α2) production. Increased activating phosphorylation of PDGFRß is also associated with enhanced TGFß expression and mTORC1 activation in the kidney cortex and glomeruli of diabetic mice and rats, respectively. Thus, pursuing TGFß noncanonical signaling, we identified how TGFß receptor I achieves mTORC1 activation through PDGFRß-mediated Akt/PRAS40 phosphorylation to spur mesangial cell hypertrophy and matrix protein accumulation. These findings provide support for targeting PDGFRß in TGFß-driven renal fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Fibronectinas/metabolismo , Humanos , Córtex Renal/metabolismo , Células Mesangiais/citologia , Células Mesangiais/metabolismo , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor beta de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
4.
J Biol Chem ; 295(21): 7249-7260, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32277051

RESUMO

Exposure to chronic hyperglycemia because of diabetes mellitus can lead to development and progression of diabetic kidney disease (DKD). We recently reported that reduced superoxide production is associated with mitochondrial dysfunction in the kidneys of mouse models of type 1 DKD. We also demonstrated that humans with DKD have significantly reduced levels of mitochondrion-derived metabolites in their urine. Here we examined renal superoxide production in a type 2 diabetes animal model, the db/db mouse, and the role of a mitochondrial protectant, MTP-131 (also called elamipretide, SS-31, or Bendavia) in restoring renal superoxide production and ameliorating DKD. We found that 18-week-old db/db mice have reduced renal and cardiac superoxide levels, as measured by dihydroethidium oxidation, and increased levels of albuminuria, mesangial matrix accumulation, and urinary H2O2 Administration of MTP-131 significantly inhibited increases in albuminuria, urinary H2O2, and mesangial matrix accumulation in db/db mice and fully preserved levels of renal superoxide production in these mice. MTP-131 also reduced total renal lysocardiolipin and major lysocardiolipin subspecies and preserved lysocardiolipin acyltransferase 1 expression in db/db mice. These results indicate that, in type 2 diabetes, DKD is associated with reduced renal and cardiac superoxide levels and that MTP-131 protects against DKD and preserves physiological superoxide levels, possibly by regulating cardiolipin remodeling.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Mitocôndrias , Oligopeptídeos/farmacologia , Superóxidos/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia
5.
J Biol Chem ; 294(24): 9440-9460, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31028173

RESUMO

S6 kinase acts as a driver for renal hypertrophy and matrix accumulation, two key pathologic signatures of diabetic nephropathy. As a post-translational modification, S6 kinase undergoes acetylation at the C terminus. The role of this acetylation to regulate kidney glomerular cell hypertrophy and matrix expansion is not known. In mesangial cells, high glucose decreased the acetylation and enhanced phosphorylation of S6 kinase and its substrates rps6 and eEF2 kinase that lead to dephosphorylation of eEF2. To determine the mechanism of S6 kinase deacetylation, we found that trichostatin A, a pan-histone deacetylase (HDAC) inhibitor, blocked all high glucose-induced effects. Furthermore, high glucose increased the expression and association of HDAC1 with S6 kinase. HDAC1 decreased the acetylation of S6 kinase and mimicked the effects of high glucose, resulting in mesangial cell hypertrophy and expression of fibronectin and collagen I (α2). In contrast, siRNA against HDAC1 inhibited these effects by high glucose. A C-terminal acetylation-mimetic mutant of S6 kinase suppressed high glucose-stimulated phosphorylation of S6 kinase, rps6 and eEF2 kinase, and inhibited the dephosphorylation of eEF2. Also, the acetylation mimetic attenuated the mesangial cell hypertrophy and fibronectin and collagen I (α2) expression. Conversely, an S6 kinase acetylation-deficient mutant induced all the above effects of high glucose. Finally, in the renal glomeruli of diabetic rats, the acetylation of S6 kinase was significantly reduced concomitant with increased HDAC1 and S6 kinase activity. In aggregate, our data uncovered a previously unrecognized role of S6 kinase deacetylation in high glucose-induced mesangial cell hypertrophy and matrix protein expression.


Assuntos
Diabetes Mellitus Experimental/patologia , Fibronectinas/metabolismo , Glucose/farmacologia , Hipertrofia/patologia , Glomérulos Renais/patologia , Células Mesangiais/patologia , Proteínas Quinases S6 Ribossômicas/metabolismo , Acetilação , Animais , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Humanos , Hipertrofia/etiologia , Hipertrofia/metabolismo , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas/genética , Transdução de Sinais , Edulcorantes/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
6.
Exp Cell Res ; 364(1): 5-15, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29397070

RESUMO

TGFß contributes to mesangial cell hypertrophy and matrix protein increase in various kidney diseases including diabetic nephropathy. Deptor is an mTOR-interacting protein and suppresses mTORC1 and mTORC2 activities. We have recently shown that TGFß-induced inhibition of deptor increases the mTOR activity. The mechanism by which TGFß regulates deptor expression is not known. Here we identify deptor as a target of the microRNA-181a. We show that in mesangial cells, TGFß increases the expression of miR-181a to downregulate deptor. Decrease in deptor augments mTORC2 activity, resulting in phosphorylation/activation of Akt kinase. Akt promotes inactivating phosphorylation of PRAS40 and tuberin, leading to stimulation of mTORC1. miR-181a-mimic increased mTORC1 and C2 activities, while anti-miR-181a inhibited them. mTORC1 controls protein synthesis via phosphorylation of translation initiation and elongation suppressors 4EBP-1 and eEF2 kinase. TGFß-stimulated miR-181a increased the phosphorylation of 4EBP-1 and eEF2 kinase, resulting in their inactivation. miR-181a-dependent inactivation of eEF2 kinase caused dephosphorylation of eEF2. Consequently, miR-181a-mimic increased protein synthesis and hypertrophy of mesangial cells similar to TGFß. Anti-miR-181a blocked these events in a deptor-dependent manner. Finally, TGFß-miR-181a-driven deptor downregulation increased the expression of fibronectin. Our results identify a novel mechanism involving miR-181a-driven deptor downregulation, which contributes to mesangial cell pathologies in renal complications.


Assuntos
Fibronectinas/metabolismo , Regulação da Expressão Gênica , Hipertrofia/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glomérulos Renais/patologia , Células Mesangiais/patologia , MicroRNAs/genética , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Regulação para Baixo , Hipertrofia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Glomérulos Renais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Células Mesangiais/metabolismo , Fosforilação , Ratos , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/genética
7.
Diabetes ; 73(7): 1167-1177, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38656940

RESUMO

Reduced kidney AMPK activity is associated with nutrient stress-induced chronic kidney disease (CKD) in male mice. In contrast, female mice resist nutrient stress-induced CKD. The role of kidney AMPK in sex-related organ protection against nutrient stress and metabolite changes was evaluated in diabetic kidney tubule-specific AMPKγ2KO (KTAMPKγ2ΚΟ) male and female mice. In wild-type (WT) males, diabetes increased albuminuria, urinary kidney injury molecule-1, hypertension, kidney p70S6K phosphorylation, and kidney matrix accumulation; these features were not exacerbated with KTAMPKγ2ΚΟ. Whereas WT females had protection against diabetes-induced kidney injury, KTAMPKγ2ΚΟ led to loss of female protection against kidney disease. The hormone 17ß-estradiol ameliorated high glucose-induced AMPK inactivation, p70S6K phosphorylation, and matrix protein accumulation in kidney tubule cells. The mechanism for female protection against diabetes-induced kidney injury is likely via an estrogen-AMPK pathway, as inhibition of AMPK led to loss of estrogen protection to glucose-induced mTORC1 activation and matrix production. RNA sequencing and metabolomic analysis identified a decrease in the degradation pathway of phenylalanine and tyrosine resulting in increased urinary phenylalanine and tyrosine levels in females. The metabolite levels correlated with loss of female protection. The findings provide new insights to explain evolutionary advantages to females during states of nutrient challenges.


Assuntos
Proteínas Quinases Ativadas por AMP , Nefropatias Diabéticas , Rim , Animais , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/prevenção & controle , Feminino , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Rim/metabolismo , Camundongos Knockout , Fosforilação , Estradiol/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Diabetes Mellitus Experimental/metabolismo
8.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766008

RESUMO

Kidney dysfunction often leads to neurological impairment, yet the complex kidney-brain relationship remains elusive. We employed spatial and bulk metabolomics to investigate a mouse model of rapid kidney failure induced by mouse double minute 2 ( Mdm2) conditional deletion in the kidney tubules to interrogate kidney and brain metabolism. Pathway enrichment analysis of focused plasma metabolomics panel pinpointed tryptophan metabolism as the most altered pathway with kidney failure. Spatial metabolomics showed toxic tryptophan metabolites in the kidneys and brains, revealing a novel connection between advanced kidney disease and accelerated kynurenine degradation. In particular, the excitotoxic metabolite quinolinic acid was localized in ependymal cells adjacent to the ventricle in the setting of kidney failure. These findings were associated with brain inflammation and cell death. A separate mouse model of acute kidney injury also had an increase in circulating toxic tryptophan metabolites along with altered brain inflammation. Patients with advanced CKD similarly demonstrated elevated plasma kynurenine metabolites and quinolinic acid was uniquely correlated with fatigue and reduced quality of life in humans. Overall, our study identifies the kynurenine pathway as a bridge between kidney decline, systemic inflammation, and brain toxicity, offering potential avenues for diagnosis and treatment of neurological issues in kidney disease.

9.
JCI Insight ; 9(11)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855868

RESUMO

Lactate elevation is a well-characterized biomarker of mitochondrial dysfunction, but its role in diabetic kidney disease (DKD) is not well defined. Urine lactate was measured in patients with type 2 diabetes (T2D) in 3 cohorts (HUNT3, SMART2D, CRIC). Urine and plasma lactate were measured during euglycemic and hyperglycemic clamps in participants with type 1 diabetes (T1D). Patients in the HUNT3 cohort with DKD had elevated urine lactate levels compared with age- and sex-matched controls. In patients in the SMART2D and CRIC cohorts, the third tertile of urine lactate/creatinine was associated with more rapid estimated glomerular filtration rate decline, relative to first tertile. Patients with T1D demonstrated a strong association between glucose and lactate in both plasma and urine. Glucose-stimulated lactate likely derives in part from proximal tubular cells, since lactate production was attenuated with sodium-glucose cotransporter-2 (SGLT2) inhibition in kidney sections and in SGLT2-deficient mice. Several glycolytic genes were elevated in human diabetic proximal tubules. Lactate levels above 2.5 mM potently inhibited mitochondrial oxidative phosphorylation in human proximal tubule (HK2) cells. We conclude that increased lactate production under diabetic conditions can contribute to mitochondrial dysfunction and become a feed-forward component to DKD pathogenesis.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Glicólise , Ácido Láctico , Humanos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Animais , Camundongos , Ácido Láctico/metabolismo , Ácido Láctico/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicações , Mitocôndrias/metabolismo , Adulto , Taxa de Filtração Glomerular , Idoso , Túbulos Renais Proximais/metabolismo , Glucose/metabolismo , Fosforilação Oxidativa , Biomarcadores/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/genética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
10.
FEBS Lett ; 597(9): 1300-1316, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36775967

RESUMO

The plasticity of proximal tubular epithelial cells in response to TGFß contributes to the expression of TWIST1 to drive renal fibrosis. The mechanism of TWIST1 expression is not known. We show that both PI3 kinase and its target mTORC2 increase TGFß-induced TWIST1 expression. TGFß enhances phosphorylation on Ser-660 in the protein kinase C ßII (PKCßII) hydrophobic motif site. Remarkably, phosphorylation-deficient PKCßIIS660A, kinase-dead PKCßII, and PKCßII knockdown blocked TWIST1 expression by TGFß. Inhibition of TWIST1 arrested TGFß-induced tubular cell hypertrophy and the expression of fibronectin, collagen I (α2), and α-smooth muscle actin. By contrast, TWIST1 overexpression induced these pathologies. Interestingly, the inhibition of PKCßII reduced these phenomena, which were countered by the expression of TWIST1. These results provide the first evidence for the involvement of the mTORC2-PKCßII axis in TWIST1 expression to promote tubular cell pathology.


Assuntos
Serina-Treonina Quinases TOR , Fator de Crescimento Transformador beta , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais , Proteína Quinase C beta , Células Epiteliais/metabolismo
11.
Physiol Rep ; 11(3): e15588, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36754446

RESUMO

Mitochondrial calcium (m Ca2+ ) uptake occurs via the Mitochondrial Ca2+ Uniporter (MCU) complex and plays a critical role in mitochondrial dynamics, mitophagy, and apoptosis. MCU complex activity is in part modulated by the expression of its regulatory subunits. Cardiovascular disease models demonstrated altered gene/protein expression of one or multiple subunits in different cells, including vascular endothelial cells (ECs). MCU complex activity was found necessary for stable flow (s-flow)-induced mitophagy and promotion of an atheroprotective EC phenotype. Disturbed flow (d-flow) is known to lead to an atheroprone phenotype. Despite the role of MCU in flow-regulated EC function, flow-induced alterations in MCU complex subunit expression are currently unknown. We exposed cultured human ECs to atheroprotective (steady shear stress, SS) or atheroprone flow (oscillatory shear stress, OS) and measured mRNA and protein levels of the MCU complex members. SS and OS differentially modulated subunit expression at gene/protein levels. Protein expression changes of the core MCU, m Ca2+ uptake 1 (MICU1) and MCU regulator 1 (MCUR1) subunits in SS- and OS-exposed, compared to static, ECs suggested an enhanced m Ca2+ influx under each flow and a potential contribution to EC dysfunction under OS. In silico analysis of a single-cell RNA-sequencing dataset was employed to extract transcript values of MCU subunits in mouse carotid ECs from regions exposed to s-flow or d-flow. Mcu and Mcur1 genes showed significant differences in expression after prolonged exposure to each flow. The differential expression of MCU complex subunits indicated a tight regulation of the complex activity under physiological and pathological hemodynamic conditions.


Assuntos
Células Endoteliais , Proteínas de Transporte da Membrana Mitocondrial , Camundongos , Humanos , Animais , Células Endoteliais/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Mitocôndrias/metabolismo , Coração , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo
12.
Cell Rep ; 42(3): 112155, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36857182

RESUMO

The most abundant cellular divalent cations, Mg2+ (mM) and Ca2+ (nM-µM), antagonistically regulate divergent metabolic pathways with several orders of magnitude affinity preference, but the physiological significance of this competition remains elusive. In mice consuming a Western diet, genetic ablation of the mitochondrial Mg2+ channel Mrs2 prevents weight gain, enhances mitochondrial activity, decreases fat accumulation in the liver, and causes prominent browning of white adipose. Mrs2 deficiency restrains citrate efflux from the mitochondria, making it unavailable to support de novo lipogenesis. As citrate is an endogenous Mg2+ chelator, this may represent an adaptive response to a perceived deficit of the cation. Transcriptional profiling of liver and white adipose reveals higher expression of genes involved in glycolysis, ß-oxidation, thermogenesis, and HIF-1α-targets, in Mrs2-/- mice that are further enhanced under Western-diet-associated metabolic stress. Thus, lowering mMg2+ promotes metabolism and dampens diet-induced obesity and metabolic syndrome.


Assuntos
Tecido Adiposo Marrom , Metabolismo Energético , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Proteínas de Transporte de Cátions , Dieta , Dieta Hiperlipídica , Metabolismo Energético/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Obesidade/metabolismo , Termogênese/genética
13.
Sci Rep ; 12(1): 21161, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476944

RESUMO

The mitochondrial calcium (Ca2+) uniporter (MCU) channel is responsible for mitochondrial Ca2+ influx. Its expression was found to be upregulated in endothelial cells (ECs) under cardiovascular disease conditions. Since the role of MCU in regulating cytosolic Ca2+ homeostasis in ECs exposed to shear stress (SS) is unknown, we studied mitochondrial Ca2+ dynamics (that is known to decode cytosolic Ca2+ signaling) in sheared ECs. To understand cause-and-effect, we ectopically expressed MCU in ECs. A higher percentage of MCU-transduced ECs exhibited mitochondrial Ca2+ transients/oscillations, and at higher frequency, under SS compared to sheared control ECs. Transients/oscillations correlated with mitochondrial reactive oxygen species (mROS) flashes and mitochondrial membrane potential (ΔΨm) flickers, and depended on activation of the mechanosensitive Piezo1 channel and the endothelial nitric oxide synthase (eNOS). A positive feedback loop composed of mitochondrial Ca2+ uptake/mROS flashes/ΔΨm flickers and endoplasmic reticulum Ca2+ release, in association with Piezo1 and eNOS, provided insights into the mechanism by which SS, under conditions of high MCU activity, may shape vascular EC energetics and function.


Assuntos
Células Endoteliais
14.
iScience ; 25(1): 103722, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35005527

RESUMO

SARS-CoV-2 is a newly identified coronavirus that causes the respiratory disease called coronavirus disease 2019 (COVID-19). With an urgent need for therapeutics, we lack a full understanding of the molecular basis of SARS-CoV-2-induced cellular damage and disease progression. Here, we conducted transcriptomic analysis of human PBMCs, identified significant changes in mitochondrial, ion channel, and protein quality-control gene products. SARS-CoV-2 proteins selectively target cellular organelle compartments, including the endoplasmic reticulum and mitochondria. M-protein, NSP6, ORF3A, ORF9C, and ORF10 bind to mitochondrial PTP complex components cyclophilin D, SPG-7, ANT, ATP synthase, and a previously undescribed CCDC58 (coiled-coil domain containing protein 58). Knockdown of CCDC58 or mPTP blocker cyclosporin A pretreatment enhances mitochondrial Ca2+ retention capacity and bioenergetics. SARS-CoV-2 infection exacerbates cardiomyocyte autophagy and promotes cell death that was suppressed by cyclosporin A treatment. Our findings reveal that SARS-CoV-2 viral proteins suppress cardiomyocyte mitochondrial function that disrupts cardiomyocyte Ca2+ cycling and cell viability.

15.
Physiol Rep ; 9(5): e14766, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33713581

RESUMO

Recently we showed that homoarginine supplementation confers kidney protection in diabetic mouse models. In this study we tested whether the protective effect of homoarginine is nitric oxide synthase-3 (NOS3)-independent in diabetic nephropathy (DN). Experiments were conducted in NOS3 deficient (NOS3-/- ) mice and their wild type littermate using multiple low doses of vehicle or streptozotocin and treated with homoarginine via drinking water for 24 weeks. Homoarginine supplementation for 24 weeks in diabetic NOS3-/- mice significantly attenuated albuminuria, increased blood urea nitrogen, histopathological changes and kidney fibrosis, kidney fibrotic markers, and kidney macrophage recruitment compared with vehicle-treated diabetic NOS3-/- mice. Furthermore, homoarginine supplementation restored kidney mitochondrial function following diabetes. Importantly, there were no significant changes in kidney NOS1 or NOS2 mRNA expression between all groups. In addition, homoarginine supplementation improved cardiac function and reduced cardiac fibrosis following diabetes. These data demonstrate that the protective effect of homoarginine is independent of NOS3, which will ultimately change our understanding of the mechanism(s) by which homoarginine induce renal and cardiac protection in DN. Homoarginine protective effect in DN could be mediated via improving mitochondrial function.


Assuntos
Nefropatias Diabéticas/tratamento farmacológico , Homoarginina/farmacologia , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estreptozocina/farmacologia , Albuminúria/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Homoarginina/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
iScience ; 24(11): 103339, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34816101

RESUMO

Transformation of naive macrophages into classically (M1) or alternatively (M2) activated macrophages regulates the inflammatory response. Here, we identified that distinct Ca2+ entry channels determine the IFNγ-induced M1 or IL-4-induced M2 transition. Naive or M2 macrophages exhibit a robust Ca2+ entry that was dependent on Orai1 channels, whereas the M1 phenotype showed a non-selective TRPC1 current. Blockade of Ca2+ entry suppresses pNF-κB/pJNK/STAT1 or STAT6 signaling events and consequently lowers cytokine production that is essential for M1 or M2 functions. Of importance, LPS stimulation shifted M2 cells from Orai1 toward TRPC1-mediated Ca2+ entry and TRPC1-/- mice exhibited transcriptional changes that suppress pro-inflammatory cytokines. In contrast, Orai1-/- macrophages showed a decrease in anti-inflammatory cytokines and exhibited a suppression of mitochondrial oxygen consumption rate and inhibited mitochondrial shape transition specifically in the M2 cells. Finally, alterations in TRPC1 or Orai1 expression determine macrophage polarization suggesting a distinct role of Ca2+ channels in modulating macrophage transformation.

17.
JCI Insight ; 5(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32956070

RESUMO

Fibrosis is the final common pathway in the pathophysiology of most forms of chronic kidney disease (CKD). As treatment of renal fibrosis still remains largely supportive, a refined understanding of the cellular and molecular mechanisms of kidney fibrosis and the development of novel compounds are urgently needed. Whether arginases play a role in the development of fibrosis in CKD is unclear. We hypothesized that endothelial arginase-2 (Arg2) promotes the development of kidney fibrosis induced by unilateral ureteral obstruction (UUO). Arg2 expression and arginase activity significantly increased following renal fibrosis. Pharmacologic blockade or genetic deficiency of Arg2 conferred kidney protection following renal fibrosis, as reflected by a reduction in kidney interstitial fibrosis and fibrotic markers. Selective deletion of Arg2 in endothelial cells (Tie2Cre/Arg2fl/fl) reduced the level of fibrosis after UUO. In contrast, selective deletion of Arg2 specifically in proximal tubular cells (Ggt1Cre/Arg2fl/fl) failed to reduce renal fibrosis after UUO. Furthermore, arginase inhibition restored kidney nitric oxide (NO) levels, oxidative stress, and mitochondrial function following UUO. These findings indicate that endothelial Arg2 plays a major role in renal fibrosis via its action on NO and mitochondrial function. Blocking Arg2 activity or expression could be a novel therapeutic approach for prevention of CKD.


Assuntos
Arginase/antagonistas & inibidores , Células Endoteliais/metabolismo , Fibrose/prevenção & controle , Nefropatias/prevenção & controle , Túbulos Renais Proximais/metabolismo , Obstrução Ureteral/complicações , Animais , Arginase/fisiologia , Fibrose/etiologia , Fibrose/metabolismo , Fibrose/patologia , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo
18.
Sci Signal ; 13(628)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317369

RESUMO

The tricarboxylic acid (TCA) cycle converts the end products of glycolysis and fatty acid ß-oxidation into the reducing equivalents NADH and FADH2 Although mitochondrial matrix uptake of Ca2+ enhances ATP production, it remains unclear whether deprivation of mitochondrial TCA substrates alters mitochondrial Ca2+ flux. We investigated the effect of TCA cycle substrates on MCU-mediated mitochondrial matrix uptake of Ca2+, mitochondrial bioenergetics, and autophagic flux. Inhibition of glycolysis, mitochondrial pyruvate transport, or mitochondrial fatty acid transport triggered expression of the MCU gatekeeper MICU1 but not the MCU core subunit. Knockdown of mitochondrial pyruvate carrier (MPC) isoforms or expression of the dominant negative mutant MPC1R97W resulted in increased MICU1 protein abundance and inhibition of MCU-mediated mitochondrial matrix uptake of Ca2+ We also found that genetic ablation of MPC1 in hepatocytes and mouse embryonic fibroblasts resulted in reduced resting matrix Ca2+, likely because of increased MICU1 expression, but resulted in changes in mitochondrial morphology. TCA cycle substrate-dependent MICU1 expression was mediated by the transcription factor early growth response 1 (EGR1). Blocking mitochondrial pyruvate or fatty acid flux was linked to increased autophagy marker abundance. These studies reveal a mechanism that controls the MCU-mediated Ca2+ flux machinery and that depends on TCA cycle substrate availability. This mechanism generates a metabolic homeostatic circuit that protects cells from bioenergetic crisis and mitochondrial Ca2+ overload during periods of nutrient stress.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Ácido Pirúvico/metabolismo , Animais , Transporte Biológico Ativo/genética , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte de Cátions/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética
19.
FEBS Lett ; 593(16): 2261-2272, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31240704

RESUMO

The mechanism of PTEN repression by high glucose in diabetic nephropathy is not known. Using proximal tubular cells, we show that inhibition of PI3 kinase/Akt and their inactive enzymes prevents high glucose-induced PTEN downregulation. Similarly, rapamycin (Rapa) and shRaptor block suppression of PTEN by high glucose. In contrast, the constitutive activation of Akt and mechanistic target of rapamycin (mTOR)C1 decrease the expression of PTEN, similarly to high glucose. Remarkably, PI3 kinase/Akt/mTORC1 inhibition significantly attenuates high glucose-stimulated increase in miR-214, which targets PTEN, while constitutively active Akt/mTORC1 increases miR-214. Furthermore, anti-miR-214 and mTORC1 inhibition block high glucose-induced hypertrophy and fibronectin expression. These results reveal the first evidence for the presence of a high glucose-forced positive feedback conduit between the three-layered kinase cascade and miR-214/ PTEN in tubular cell injury.


Assuntos
Glucose/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Retroalimentação Fisiológica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo
20.
J Physiol Biochem ; 69(3): 467-76, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23318962

RESUMO

The ability of ethanol extract of Phyllanthus amarus root (EEPA) to decrease bilirubin level and oxidative stress in phenylhydrazine-induced neonatal jaundice in mice was investigated. Administration of phenylhydrazine (75 mg/kg b.w.) significantly elevated total and unconjugated serum bilirubin level compared to control mice. EEPA (5, 10, and 20 mg/kg b.w., oral) dose-dependently reduced the bilirubin level. EEPA treatment also upregulated hepatic CAR and CYP3A1, accounting for its ability to facilitate bilirubin clearance. A single dose of EEPA (20 mg/kg b.w.) induced higher level of bilirubin clearance than phototherapy, widely used for treating neonatal jaundice. Furthermore, phenylhydrazine administration significantly increased MDA, protein carbonyl, and total thiol content and lowered the GSH level along with superoxide dismutase and catalase activity in erythrocyte compared to the control group. Single administration of EEPA (20 mg/kg b.w.) significantly reversed the trend. Presence of gallic acid, gentisic acid, and ortho-coumaric acid in EEPA was identified by HPLC analysis. Amongst these, the major phenolic constituent, gallic acid, exhibited significant bilirubin-lowering effect. These results suggested that P. amarus may be beneficial in reducing bilirubin level as well as oxidative stress in neonatal jaundice.


Assuntos
Bilirrubina/sangue , Icterícia Neonatal/tratamento farmacológico , Phyllanthus/química , Fitoterapia , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Administração Oral , Animais , Catalase/metabolismo , Receptor Constitutivo de Androstano , Citocromo P-450 CYP3A/metabolismo , Relação Dose-Resposta a Droga , Etanol , Glutationa/metabolismo , Humanos , Recém-Nascido , Icterícia Neonatal/sangue , Icterícia Neonatal/induzido quimicamente , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fenil-Hidrazinas , Receptores Citoplasmáticos e Nucleares/metabolismo , Superóxido Dismutase/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA