Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811857

RESUMO

Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. PdCO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.

2.
Pflugers Arch ; 475(12): 1409-1419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37987804

RESUMO

Optogenetics is a technology using light-sensitive proteins to control signaling pathways and physiological processes in cells and organs and has been applied in neuroscience, cardiovascular sciences, and many other research fields. Most commonly used optogenetic actuators are sensitive to blue and green light, but red-light activation would allow better tissue penetration and less phototoxicity. Cyp27c1 is a recently deorphanized cytochrome P450 enzyme that converts vitamin A1 to vitamin A2, thereby red-shifting the spectral sensitivity of visual pigments and enabling near-infrared vision in some aquatic species.Here, we investigated the ability of Cyp27c1-generated vitamin A2 to induce a shift in spectral sensitivity of the light-gated ion channel Channelrhodopsin-2 (ChR2) and its red-shifted homolog ReaChR. We used patch clamp to measure photocurrents at specific wavelengths in HEK 293 cells expressing ChR2 or ReaChR. Vitamin A2 incubation red-shifted the wavelength for half-maximal currents (λ50%) by 6.8 nm for ChR2 and 12.4 nm for ReaChR. Overexpression of Cyp27c1 in HEK 293 cells showed mitochondrial localization, and HPLC analysis showed conversion of vitamin A1 to vitamin A2. Notably, the λ50% of ChR2 photocurrents was red-shifted by 10.5 nm, and normalized photocurrents at 550 nm were about twofold larger with Cyp27c1 expression. Similarly, Cyp27c1 shifted the λ50% of ReaChR photocurrents by 14.3 nm and increased normalized photocurrents at 650 nm almost threefold.Since vitamin A2 incubation is not a realistic option for in vivo applications and expression of Cyp27c1 leads to a greater red-shift in spectral sensitivity, we propose co-expression of this enzyme as a novel strategy for red-shifted optogenetics.


Assuntos
Optogenética , Vitamina A , Humanos , Vitamina A/metabolismo , Células HEK293 , Coração , Channelrhodopsins/genética
4.
Nat Chem Biol ; 14(8): 764-767, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013061

RESUMO

L-type Ca2+ channels (LTCCs) play a crucial role in excitation-contraction coupling and release of hormones from secretory cells. They are targets of antihypertensive and antiarrhythmic drugs such as diltiazem. Here, we present a photoswitchable diltiazem, FHU-779, which can be used to reversibly block endogenous LTCCs by light. FHU-779 is as potent as diltiazem and can be used to place pancreatic ß-cell function and cardiac activity under optical control.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Diltiazem/farmacologia , Corantes Fluorescentes/farmacologia , Coração/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Imagem Óptica , Canais de Cálcio Tipo L/química , Diltiazem/química , Corantes Fluorescentes/química , Humanos , Células Secretoras de Insulina/metabolismo , Luz , Processos Fotoquímicos
6.
Int J Mol Sci ; 18(12)2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29211031

RESUMO

Side effects on cardiac ion channels causing lethal arrhythmias are one major reason for drug withdrawals from the market. Field potential (FP) recording from cardiomyocytes, is a well-suited tool to assess such cardiotoxic effects of drug candidates in preclinical drug development, but it is currently limited to the spontaneous beating of the cardiomyocytes and manual analysis. Herein, we present a novel optogenetic cardiotoxicity screening system suited for the parallel automated frequency-dependent analysis of drug effects on FP recorded from human-induced pluripotent stem cell-derived cardiomyocytes. For the expression of the light-sensitive cation channel Channelrhodopsin-2, we optimised protocols using virus transduction or transient mRNA transfection. Optical stimulation was performed with a new light-emitting diode lid for a 96-well FP recording system. This enabled reliable pacing at physiologically relevant heart rates and robust recording of FP. Thereby we detected rate-dependent effects of drugs on Na⁺, Ca2+ and K⁺ channel function indicated by FP prolongation, FP shortening and the slowing of the FP downstroke component, as well as generation of afterdepolarisations. Taken together, we present a scalable approach for preclinical frequency-dependent screening of drug effects on cardiac electrophysiology. Importantly, we show that the recording and analysis can be fully automated and the technology is readily available using commercial products.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Moduladores de Transporte de Membrana/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Optogenética/métodos , Testes de Toxicidade/métodos , Potenciais de Ação , Cardiotoxicidade , Linhagem Celular , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Canais Iônicos/metabolismo , Miócitos Cardíacos/fisiologia , Optogenética/instrumentação , Testes de Toxicidade/instrumentação
7.
Development ; 140(5): 987-95, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23404105

RESUMO

Integrin linked kinase (ILK) connects the ILK-Pinch-Parvin complex with integrin adhesion sites. Because of the functional relevance of integrin-linked signaling for endothelial cell (EC) biology, we have explored this pathway in Ilk(-/-) embryonic stem (ES) cells differentiated into ECs and vessel-like structures. We have focused in particular on the mechanistic relevance of ILK-Pinch-Parvin complex-related signaling for EC development and tube formation. Our analysis revealed that the formation of vessel-like structures was strongly reduced in Ilk(-/-) ES cells and that this phenotype could be rescued by re-expression of ILK in ES cells. ECs were MACS sorted from wild-type (WT) and Ilk(-/-) ES cells and functional analysis using intracellular calcium imaging as the read-out yielded a complete lack of vascular endothelial growth factor- and epidermal growth factor-dependent responses. The possibility of a caveolin 1-related defect was investigated by transfecting WT and Ilk(-/-) ECs with a caveolin 1-EGFP fusion protein. Time-lapse microscopy showed that the prominent phenotype is due to altered dynamics of caveolin 1 and to a lack of positioning of caveolin 1 in the vicinity of the plasma membrane and that it is rescued by re-expressing ILK in the Ilk(-/-) ES cells. We also found that the defect is caused by the perturbed organization of microtubules and cortical actin filaments. Thus, ILK is required as a scaffold to allow actin-microtubule interactions and correct positioning of caveolin 1 close to the plasma membrane. This is crucial for signaling compartmentalization in ECs and explains the key role of ILK for EC development and function.


Assuntos
Caveolina 1/metabolismo , Células Endoteliais/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Células Endoteliais/fisiologia , Deleção de Genes , Camundongos , Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Transporte Proteico/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Distribuição Tecidual/genética
8.
Basic Res Cardiol ; 111(2): 14, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26803770

RESUMO

Long QT syndrome is a potentially life-threatening disease characterized by delayed repolarization of cardiomyocytes, QT interval prolongation in the electrocardiogram, and a high risk for sudden cardiac death caused by ventricular arrhythmia. The genetic type 3 of this syndrome (LQT3) is caused by gain-of-function mutations in the SCN5A cardiac sodium channel gene which mediates the fast Nav1.5 current during action potential initiation. Here, we report the analysis of LQT3 human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These were generated from a patient with a heterozygous p.R1644H mutation in SCN5A known to interfere with fast channel inactivation. LQT3 hiPSC-CMs recapitulated pathognomonic electrophysiological features of the disease, such as an accelerated recovery from inactivation of sodium currents as well as action potential prolongation, especially at low stimulation rates. In addition, unlike previously described LQT3 hiPSC models, we observed a high incidence of early after depolarizations (EADs) which is a trigger mechanism for arrhythmia in LQT3. Administration of specific sodium channel inhibitors was found to shorten action and field potential durations specifically in LQT3 hiPSC-CMs and antagonized EADs in a dose-dependent manner. These findings were in full agreement with the pharmacological response profile of the underlying patient and of other patients from the same family. Thus, our data demonstrate the utility of patient-specific LQT3 hiPSCs for assessing pharmacological responses to putative drugs and for improving treatment efficacies.


Assuntos
Síndrome do QT Longo/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Doença do Sistema de Condução Cardíaco , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas , Síndrome do QT Longo/genética , Técnicas de Patch-Clamp , Fenótipo
9.
Stem Cells ; 33(5): 1456-69, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25639979

RESUMO

Directed cardiac differentiation of human pluripotent stem cells (hPSCs) enables disease modeling, investigation of human cardiogenesis, as well as large-scale production of cardiomyocytes (CMs) for translational purposes. Multiple CM differentiation protocols have been developed to individually address specific requirements of these diverse applications, such as enhanced purity at a small scale or mass production at a larger scale. However, there is no universal high-efficiency procedure for generating CMs both in two-dimensional (2D) and three-dimensional (3D) culture formats, and undefined or complex media additives compromise functional analysis or cost-efficient upscaling. Using systematic combinatorial optimization, we have narrowed down the key requirements for efficient cardiac induction of hPSCs. This implied differentiation in simple serum and serum albumin-free basal media, mediated by a minimal set of signaling pathway manipulations at moderate factor concentrations. The method was applicable both to 2D and 3D culture formats as well as to independent hPSC lines. Global time-course gene expression analyses over extended time periods and in comparison with human heart tissue were used to monitor culture-induced maturation of the resulting CMs. This suggested that hPSC-CMs obtained with our procedure reach a rather stable transcriptomic state after approximately 4 weeks of culture. The underlying gene expression changes correlated well with a decline of immature characteristics as well as with a gain of structural and physiological maturation features within this time frame. These data link gene expression patterns of hPSC-CMs to functional readouts and thus define the cornerstones of culture-induced maturation.


Assuntos
Diferenciação Celular , Coração/fisiologia , Células-Tronco Pluripotentes/citologia , Humanos , Mesoderma/citologia , Miócitos Cardíacos/citologia
10.
Development ; 137(6): 993-1002, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20179098

RESUMO

beta1 integrins are important regulators of vascular differentiation and development, as their endothelial-specific deletion results in embryonic lethality. In the present study, we investigated the molecular mechanisms underlying the prominent vascular abnormalities that occur in the absence of beta1 integrins. Because of the early embryonic lethality of knockout mice, we studied endothelial cell and vessel development in beta1-integrin-deficient murine embryonic stem cells to gain novel insights into the role of beta1 integrins in vasculo-angiogenesis. We found that vessel development was strongly defective in the mutant embryoid bodies (EBs), as only primitive and short sprouts developed from clusters of vascular precursors in beta1 integrin(-/-) EBs, whereas complex network formation of endothelial tubes was observed in wild-type EBs. The vascular defect was due to deficient beta1 integrin expression in endothelial cells, as its endothelial-specific re-expression rescued the phenotype entirely. The mechanism responsible for defective vessel formation was found to be reduced endothelial cell maturation, migration and elongation. Moreover, the lower number of endothelial cells in beta1 integrin(-/-) EBs was due to an increased apoptosis versus proliferation rate. The enhanced apoptosis and proliferation of beta1 integrin(-/-) endothelial cells was related to the elevation of peNOS and pAKT signaling molecules, respectively. Our data demonstrate that endothelial beta1 integrins are determinants of vessel formation and that this effect is mediated via different signaling pathways.


Assuntos
Vasos Sanguíneos/embriologia , Integrina beta1/fisiologia , Neovascularização Fisiológica/genética , Animais , Apoptose/genética , Vasos Sanguíneos/metabolismo , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Endotélio Vascular/embriologia , Endotélio Vascular/fisiologia , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Integrina beta1/genética , Integrina beta1/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo III/fisiologia , Organismos Geneticamente Modificados
11.
Nat Methods ; 7(11): 897-900, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20881965

RESUMO

Electrical stimulation is the standard technique for exploring electrical behavior of heart muscle, but this approach has considerable technical limitations. Here we report expression of the light-activated cation channel channelrhodopsin-2 for light-induced stimulation of heart muscle in vitro and in mice. This method enabled precise localized stimulation and constant prolonged depolarization of cardiomyocytes and cardiac tissue resulting in alterations of pacemaking, Ca(2+) homeostasis, electrical coupling and arrhythmogenic spontaneous extrabeats.


Assuntos
Miócitos Cardíacos/fisiologia , Animais , Cálcio/metabolismo , Channelrhodopsins , Estimulação Elétrica , Eletrocardiografia , Camundongos , Marca-Passo Artificial
12.
Basic Res Cardiol ; 108(3): 348, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23558439

RESUMO

The cardiac intercalated disc harbors mechanical and electrical junctions as well as ion channel complexes mediating propagation of electrical impulses. Cardiac connexin43 (Cx43) co-localizes and interacts with several of the proteins located at intercalated discs in the ventricular myocardium. We have generated conditional Cx43D378stop mice lacking the last five C-terminal amino acid residues, representing a binding motif for zonula occludens protein-1 (ZO-1), and investigated the functional consequences of this mutation on cardiac physiology and morphology. Newborn and adult homozygous Cx43D378stop mice displayed markedly impaired and heterogeneous cardiac electrical activation properties and died from severe ventricular arrhythmias. Cx43 and ZO-1 were co-localized at intercalated discs in Cx43D378stop hearts, and the Cx43D378stop gap junction channels showed normal coupling properties. Patch clamp analyses of isolated adult Cx43D378stop cardiomyocytes revealed a significant decrease in sodium and potassium current densities. Furthermore, we also observed a significant loss of Nav1.5 protein from intercalated discs in Cx43D378stop hearts. The phenotypic lethality of the Cx43D378stop mutation was very similar to the one previously reported for adult Cx43 deficient (Cx43KO) mice. Yet, in contrast to Cx43KO mice, the Cx43 gap junction channel was still functional in the Cx43D378stop mutant. We conclude that the lethality of Cx43D378stop mice is independent of the loss of gap junctional intercellular communication, but most likely results from impaired cardiac sodium and potassium currents. The Cx43D378stop mice reveal for the first time that Cx43 dependent arrhythmias can develop by mechanisms other than impairment of gap junction channel function.


Assuntos
Arritmias Cardíacas/metabolismo , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação , Fatores Etários , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Conexina 43/química , Conexina 43/genética , Eletrocardiografia Ambulatorial , Mapeamento Epicárdico , Genótipo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Fenótipo , Telemetria , Fatores de Tempo , Transfecção , Proteína da Zônula de Oclusão-1/metabolismo
13.
Circ Res ; 109(8): 841-7, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21799153

RESUMO

RATIONALE: Current approaches for the investigation of long-QT syndromes (LQTS) are mainly focused on identification of the mutation and its characterization in heterologous expression systems. However, it would be extremely helpful to be able to characterize the pathophysiological effects of mutations and to screen drugs in cardiomyocytes. OBJECTIVE: The aim of this study was to establish as a proof of principle the disease-specific cardiomyocytes from a mouse model with LQTS 3 by use of induced pluripotent stem (iPS) cells and to demonstrate that the mutant cardiomyocytes display the characteristic pathophysiological features in vitro. METHODS AND RESULTS: We generated disease-specific iPS cells from a mouse model with a human mutation of the cardiac Na(+) channel that causes LQTS 3. The control and LQTS 3-specific iPS cell lines were pluripotent and could be differentiated into spontaneously beating cardiomyocytes. Patch-clamp measurements of LQTS 3-specific cardiomyocytes showed the biophysical effects of the mutation on the Na(+) current, with faster recovery from inactivation and larger late currents than observed in controls. Moreover, LQTS 3-specific cardiomyocytes had prolonged action potential durations and early afterdepolarizations at low pacing rates, both of which are classic features of the LQTS 3 mutation. CONCLUSIONS: We demonstrate that disease-specific iPS cell-derived cardiomyocytes from an LQTS 3 mouse model with a human mutation recapitulate the typical pathophysiological phenotype in vitro. Thus, this method is a powerful tool to investigate disease mechanisms in vitro and to perform patient-specific drug screening.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Síndrome do QT Longo/patologia , Síndrome do QT Longo/fisiopatologia , Miócitos Cardíacos/patologia , Animais , Doença do Sistema de Condução Cardíaco , Diferenciação Celular/fisiologia , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Síndrome do QT Longo/genética , Camundongos , Camundongos SCID , Camundongos Transgênicos , Miócitos Cardíacos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5 , Canais de Sódio/genética
14.
bioRxiv ; 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37425961

RESUMO

Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein coupled receptor (GPCRs) pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision, or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable GPCR that can suppress synaptic transmission in mammalian neurons with high temporal precision in-vivo. PdCO has superior biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.

15.
Pediatr Cardiol ; 33(6): 907-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22639002

RESUMO

Voltage-dependent L-type Ca2+ channels (VDCCs) are critically involved in excitation contraction coupling and regulation of the force of contraction. An important mechanism contributing to the adaptation of heart function is modulation of the L-type Ca2+ current (I(Ca-L)) by hormones of the autonomous nervous system. The signaling pathways underlying this regulation in the adult heart are well understood. However, VDCC expression and its regulation in the embryonic heart are less understood. This report therefore provides a short overview of the current knowledge on this topic using embryonic stem cells and the mouse as model systems.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio/biossíntese , Cálcio/metabolismo , Coração/embriologia , Miócitos Cardíacos/metabolismo , Animais , Canais de Cálcio/metabolismo , Eletrofisiologia , Células-Tronco Embrionárias , Camundongos , Modelos Animais , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais
16.
Cells ; 11(4)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35203340

RESUMO

Connexins (Cx) are a large family of membrane proteins that can form intercellular connections, so-called gap junctions between adjacent cells. Cx43 is widely expressed in mammals and has a variety of different functions, such as the propagation of electrical conduction in the cardiac ventricle. Despite Cx43 knockout models, many questions regarding the biology of Cx43 in health and disease remain unanswered. Herein we report the establishment of a Cre-inducible Cx43 overexpression system in murine embryonic stem (ES) cells. This enables the investigation of the impact of Cx43 overexpression in somatic cells. We utilized a double reporter system to label Cx43-overexpressing cells via mCherry fluorescence and exogenous Cx43 via fusion with P2A peptide to visualize its distribution pattern. We proved the functionality of our systems in ES cells, HeLa cells, and 3T3-fibroblasts and demonstrated the formation of functional gap junctions based on dye diffusion and FRAP experiments. In addition, Cx43-overexpressing ES cells could be differentiated into viable cardiomyocytes, as shown by the formation of cross striation and spontaneous beating. Analysis revealed faster and more rhythmic beating of Cx43-overexpressing cell clusters. Thus, our Cx43 overexpression systems enable the investigation of Cx43 biology and function in cardiomyocytes and other somatic cells.


Assuntos
Conexina 43 , Células-Tronco Embrionárias Murinas , Animais , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Células HeLa , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo
17.
Nat Commun ; 13(1): 1765, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365606

RESUMO

Gq proteins are universally important for signal transduction in mammalian cells. The underlying kinetics and transformation from extracellular stimuli into intracellular signaling, however could not be investigated in detail so far. Here we present the human Neuropsin (hOPN5) for specific and repetitive manipulation of Gq signaling in vitro and in vivo with high spatio-temporal resolution. Properties and G protein specificity of hOPN5 are characterized by UV light induced IP3 generation, Ca2+ transients and inhibition of GIRK channel activity in HEK cells. In adult hearts from a transgenic animal model, light increases the spontaneous beating rate. In addition, we demonstrate light induced contractions in the small intestine, which are not detectable after pharmacological Gq protein block. All-optical high-throughput screening for TRPC6 inhibitors is more specific and sensitive than conventional pharmacological screening. Thus, we demonstrate specific Gq signaling of hOPN5 and unveil its potential for optogenetic applications.


Assuntos
Optogenética , Transdução de Sinais , Animais , Humanos , Luz , Mamíferos , Transdução de Sinais/fisiologia , Canal de Cátion TRPC6
18.
Nat Commun ; 13(1): 7109, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402762

RESUMO

Carvedilol is among the most effective ß-blockers for improving survival after myocardial infarction. Yet the mechanisms by which carvedilol achieves this superior clinical profile are still unclear. Beyond blockade of ß1-adrenoceptors, arrestin-biased signalling via ß2-adrenoceptors is a molecular mechanism proposed to explain the survival benefits. Here, we offer an alternative mechanism to rationalize carvedilol's cellular signalling. Using primary and immortalized cells genome-edited by CRISPR/Cas9 to lack either G proteins or arrestins; and combining biological, biochemical, and signalling assays with molecular dynamics simulations, we demonstrate that G proteins drive all detectable carvedilol signalling through ß2ARs. Because a clear understanding of how drugs act is imperative to data interpretation in basic and clinical research, to the stratification of clinical trials or to the monitoring of drug effects on the target pathway, the mechanistic insight gained here provides a foundation for the rational development of signalling prototypes that target the ß-adrenoceptor system.


Assuntos
Antagonistas Adrenérgicos beta , Infarto do Miocárdio , Humanos , Carvedilol/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Receptores Adrenérgicos beta 2/genética , Infarto do Miocárdio/tratamento farmacológico
19.
Circulation ; 122(18): 1823-36, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20956206

RESUMO

BACKGROUND: Ion channels are key determinants for the function of excitable cells, but little is known about their role and involvement during cardiac development. Earlier work identified Ca(2+)-activated potassium channels of small and intermediate conductance (SKCas) as important regulators of neural stem cell fate. Here we have investigated their impact on the differentiation of pluripotent cells toward the cardiac lineage. METHODS AND RESULTS: We have applied the SKCa activator 1-ethyl-2-benzimidazolinone on embryonic stem cells and identified this particular ion channel family as a new critical target involved in the generation of cardiac pacemaker-like cells: SKCa activation led to rapid remodeling of the actin cytoskeleton, inhibition of proliferation, induction of differentiation, and diminished teratoma formation. Time-restricted SKCa activation induced cardiac mesoderm and commitment to the cardiac lineage as shown by gene regulation, protein, and functional electrophysiological studies. In addition, the differentiation into cardiomyocytes was modulated in a qualitative fashion, resulting in a strong enrichment of pacemaker-like cells. This was accompanied by induction of the sino-atrial gene program and in parallel by a loss of the chamber-specific myocardium. In addition, SKCa activity induced activation of the Ras-Mek-Erk signaling cascade, a signaling pathway involved in the 1-ethyl-2-benzimidazolinone-induced effects. CONCLUSIONS: SKCa activation drives the fate of pluripotent cells toward mesoderm commitment and cardiomyocyte specification, preferentially into nodal-like cardiomyocytes. This provides a novel strategy for the enrichment of cardiomyocytes and in particular, the generation of a specific subtype of cardiomyocytes, pacemaker-like cells, without genetic modification.


Assuntos
Diferenciação Celular/fisiologia , Sistema de Condução Cardíaco/citologia , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Canais de Potássio Cálcio-Ativados/fisiologia , Animais , Benzimidazóis/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Linhagem Celular , Proliferação de Células , Citoesqueleto/fisiologia , Sistema de Condução Cardíaco/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/fisiologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/fisiologia , Canais de Potássio Cálcio-Ativados/efeitos dos fármacos , Transdução de Sinais/fisiologia
20.
Front Physiol ; 12: 768495, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987414

RESUMO

G-protein signaling pathways are central in the regulation of cardiac function in physiological and pathophysiological conditions. Their functional analysis through optogenetic techniques with selective expression of opsin proteins and activation by specific wavelengths allows high spatial and temporal precision. Here, we present the application of long wavelength-sensitive cone opsin (LWO) in cardiomyocytes for activation of the Gi signaling pathway by red light. Murine embryonic stem (ES) cells expressing LWO were generated and differentiated into beating cardiomyocytes in embryoid bodies (EBs). Illumination with red light (625 nm) led to an instantaneous decrease up to complete inhibition (84-99% effectivity) of spontaneous beating, but had no effect on control EBs. By using increasing light intensities with 10 s pulses, we determined a half maximal effective light intensity of 2.4 µW/mm2 and a maximum effect at 100 µW/mm2. Pre-incubation of LWO EBs with pertussis toxin completely inhibited the light effect proving the specificity for Gi signaling. Frequency reduction was mainly due to the activation of GIRK channels because the specific channel blocker tertiapin reduced the light effect by ~80%. Compared with pharmacological stimulation of M2 receptors with carbachol with slow kinetics (>30 s), illumination of LWO had an identical efficacy, but much faster kinetics (<1 s) in the activation and deactivation demonstrating the temporal advantage of optogenetic stimulation. Thus, LWO is an effective optogenetic tool for selective stimulation of the Gi signaling cascade in cardiomyocytes with red light, providing high temporal precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA