Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(3): 033201, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905368

RESUMO

We solve a model that describes a stimulated conversion between ultracold bosonic atoms and molecules. The reaction is triggered by a linearly time-dependent transition throughout the Feshbach resonance. Our solution predicts a dependence, with a dynamic phase transition, of the reaction efficiency on the transition rate for both atoms-to-molecule pairing and molecular dissociation processes. We find that for the latter process with a linear energy dispersion of atomic modes, the emerging phase can have a thermalized energy distribution of noninteracting bosons with the temperature defined by the rate of the transition. This provides a simple interpretation of the phase transition in terms of the creation of equilibrium Bose-Einstein condensate.

2.
Sci Rep ; 13(1): 17202, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821538

RESUMO

Recent research has focused on nanoparticles. Aedes albopictus is a potential vector that transmits fatal diseases. Recently, Phyto-reduced silver nanoparticles (AgNPs) were shown to be mosquito larvicides. This study aimed to synthesize silver nanoparticles using Diospyros montana leaf extract, characterize them, and test their efficacy as larvicide and pupicide against Ae. albopictus mosquitoes, determine their duration of effectiveness as a larvicide, identify plant compounds that help to synthesize nanoparticles, and assess their effects on non-target organisms. Quercetin, luteolin, kaempferol, gallocatechin gallate, epigallocatechin gallate, and capsaicin are among the novel reducing and capping agents found in D. montana leaf through LCMS analysis. The color shift and distinctive peak in UV-Vis spectroscopy made it simple to see how biogenic AgNPs were produced by converting Ag+ ions into Ag0. Substantial negative value (- 19.10 mv) of zeta potential demonstrated the long-term stability of AgNPs. A moderate range (8.72 - 50.75 nm) of particle size distribution pattern was obtained using the DLS technique. SEM and TEM images depicted the quasi-spherical (or polyhedral) and spherical shape of the nanoparticles, having approximately 16.75 nm average size. Synthesized AgNPs had a low LC90 value (< 10 ppm) for all larval instars and pupae of Ae. albopictus and had negligible mal effect on non-target organisms. Regression equations showed dose-dependent mortality by the positive correlation between mortality rate and AgNPs concentration, and each time the regression coefficient (R2) value was larger than zero. This study shows that D. montana leaf extract is an environment-friendly and sustainable source of an effective reducing and capping agent to synthesize highly stable, ecologically acceptable silver nanoparticles and their application as mosquitocide.


Assuntos
Aedes , Dengue , Diospyros , Inseticidas , Nanopartículas Metálicas , Animais , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Montana , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inseticidas/farmacologia , Inseticidas/química , Mosquitos Vetores , Larva , Folhas de Planta
3.
Sci Rep ; 13(1): 7403, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149703

RESUMO

Larvae of the elephant mosquitoes, Toxorhynchites spp. (Diptera: Culicidae) are predacious on larvae of other mosquito species and some small aquatic organisms; this predatory behavior can be applied in (mosquito) vector control. The present study examined the feeding behavior of Toxorhynchites splendens on Aedes albopictus in relation to search area [volume of water (X1)] and prey density (X2), prey instars, predatory preference and larvae's functional response on variable prey densities. Experiments were conducted to determine changes in the feeding activity of T. splendens with different search areas and showed that rate of prey consumption was inversely proportional to the search area as evidenced by a negative value of X1 in the regression equation and positively related to prey density. The non-linear polynomial logistic regression estimated a significant linear parameter (P1 < 0) for the functional response analysis suggesting a Type II functional response. Differences in feeding response related to the different combinations of prey instars were statistically not significant (p > 0.05), expressing that all the instars of prey were equally susceptible to the predator. Toxorhynchites splendens preferred to consume Ae. albopictus larvae rather than Tubifex when supplied together as a food source.


Assuntos
Aedes , Culicidae , Animais , Aedes/fisiologia , Larva/fisiologia , Comportamento Predatório/fisiologia , Mosquitos Vetores , Culicidae/fisiologia , Controle Biológico de Vetores
4.
PeerJ ; 11: e16085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780372

RESUMO

Background: Biodiversity conservation is becoming challenging day by day. For this, it is essential to understand the distribution, habitat, and impact of anthropogenic activities on animals at risk. We assessed the suitable habitats and anthropogenic impacts on Asiatic black bears, common leopards, musk deer, and snow leopards in and outside the protected areas of Gandaki Province, Nepal. Methods: We collected the presence locations of Asiatic black bears, common leopards, musk deer, and snow leopards based on scats and other signs. We employed the Maximum Entropy (MaxEnt) tool to identify suitable habitats of our studied species and their anthropogenic impacts on them. Results: The total suitable habitat of the common leopard was found to be 6,052 km2, followed by the Asiatic black bear (5,819 km2), snow leopard (4,447 km2), and musk deer (1,690 km2) in Gandaki Province. Most of the areas of suitable habitat for common leopards and Asiatic black bears were outside the protected areas, and for musk deer and snow leopards were inside the protected areas. Elevation was the most important variable determining habitat suitability of Asiatic black bear, common leopard, and musk deer, whereas the distance to water was the most important variable determining habitat suitability of snow leopard. Asiatic black bears, common leopards, and musk deer face significant anthropogenic impacts, but snow leopards face some anthropogenic impacts. Conclusion: Managing these animals' habitats inside and outside protected areas is essential. Hence, biodiversity conservation and livelihood opportunities should be balanced in the Himalayas on a win-win basis.


Assuntos
Cervos , Panthera , Ursidae , Animais , Espécies em Perigo de Extinção , Conservação dos Recursos Naturais , Ecossistema , Ruminantes
5.
Sci Rep ; 11(1): 9734, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958692

RESUMO

The graphene family materials are two-dimensional staggered monolayers with a gapped energy band structure due to intrinsic spin-orbit coupling. The mass gaps in these materials can be manipulated on-demand via biasing with a static electric field, an off-resonance circularly polarized laser, or an exchange interaction field, allowing the monolayer to be driven through a multitude of topological phase transitions. We investigate the dynamics of spin-orbit coupled graphene family materials to unveil topological phase transition fingerprints embedded in the nonlinear regime and show how these signatures manifest in the nonlinear Kerr effect and in third-harmonic generation processes. We show that the resonant nonlinear spectral response of topological fermions can be traced to specific Dirac cones in these materials, enabling characterization of topological invariants in any phase by detecting the cross-polarized component of the electromagnetic field. By shedding light on the unique processes involved in harmonic generation via topological phenomena our findings open an encouraging path towards the development of novel nonlinear systems based on two-dimensional semiconductors of the graphene family.

6.
J Phys Condens Matter ; 30(38): 385603, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30106380

RESUMO

The Harper equation arising out of a tight-binding model of electrons on a honeycomb lattice subject to a uniform magnetic field perpendicular to the plane is studied. Contrasting and complementary approaches involving von Neumann entropy, fidelity, fidelity susceptibility, and multifractal analysis are employed to characterize the phase diagram. Remarkably even in the absence of the quasi-periodic on-site potential term, the Hamiltonian allows for a metal-insulator transition. The phase diagram consists of three phases: two metallic phases and an insulating phase. A variant model where next nearest neighbor hopping is included, exhibits a mobility edge and does not allow for a simple single phase diagram characterizing all the eigenstates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA