Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36233322

RESUMO

Desmin mutations cause familial and sporadic cardiomyopathies. In addition to perturbing the contractile apparatus, both desmin deficiency and mutated desmin negatively impact mitochondria. Impaired myocardial metabolism secondary to mitochondrial defects could conceivably exacerbate cardiac contractile dysfunction. We performed metabolic myocardial phenotyping in left ventricular cardiac muscle tissue in desmin knock-out mice. Our analyses revealed decreased mitochondrial number, ultrastructural mitochondrial defects, and impaired mitochondria-related metabolic pathways including fatty acid transport, activation, and catabolism. Glucose transporter 1 and hexokinase-1 expression and hexokinase activity were increased. While mitochondrial creatine kinase expression was reduced, fetal creatine kinase expression was increased. Proteomic analysis revealed reduced expression of proteins involved in electron transport mainly of complexes I and II, oxidative phosphorylation, citrate cycle, beta-oxidation including auxiliary pathways, amino acid catabolism, and redox reactions and oxidative stress. Thus, desmin deficiency elicits a secondary cardiac mitochondriopathy with severely impaired oxidative phosphorylation and fatty and amino acid metabolism. Increased glucose utilization and fetal creatine kinase upregulation likely portray attempts to maintain myocardial energy supply. It may be prudent to avoid medications worsening mitochondrial function and other metabolic stressors. Therapeutic interventions for mitochondriopathies might also improve the metabolic condition in desmin deficient hearts.


Assuntos
Cardiomiopatias , Desmina , Hexoquinase , Aminoácidos/metabolismo , Animais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Citratos/metabolismo , Creatina Quinase Mitocondrial/metabolismo , Desmina/genética , Desmina/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Fosforilação Oxidativa , Proteômica
2.
Eur J Drug Metab Pharmacokinet ; 44(4): 567-578, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30674038

RESUMO

BACKGROUND AND OBJECTIVES: Since there is no clear evidence in the literature to show how non-modified single-stranded DNA (ssDNA) drugs are metabolized in humans, we assessed the metabolism of BC 007, an ssDNA therapeutic, under development as a neutralizer of autoantibodies against G-protein-coupled receptors. In-vitro, investigating its stability in monkey plasma and serum, a successive 3'-exonuclease degradation resulting in several n-x degradation products has been previously reported. Here, we investigated the metabolism of BC 007 in humans after intravenous application to autoantibody-positive healthy subjects, in line with Phase I safety testing. METHODS: 1H-NMR was applied for n-x degradation product search and beta-aminoisobutyric acid (bAIBA) measurement in urine; ultra-performance liquid chromatography-mass spectrometry was also used for the latter. Colorimetric assays were used for quantification of uric acid in serum and urine. RESULTS: Fast degradation prohibited the detection of the intermediate n-x degradation products in urine using 1H-NMR. Instead, NMR revealed a further downstream degradation product, bAIBA, which was also detected in serum shortly after initial application. The purine degradation product, uric acid, confirmed this finding of fast metabolism. CONCLUSION: Fast and full degradation of BC 007, shown by nucleic bases degradation products, is one of the first reports about the fate of a ssDNA product in humans.


Assuntos
DNA/metabolismo , DNA/urina , Oligonucleotídeos/metabolismo , Oligonucleotídeos/urina , Adolescente , Adulto , Idoso , Ácidos Aminoisobutíricos/urina , Autoanticorpos/metabolismo , Método Duplo-Cego , Feminino , Voluntários Saudáveis , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA