Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(19): 11898-11909, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35510687

RESUMO

The magnetic properties of cobalt metal nanowires grown by electrodeposition in porous membranes depend largely on the synthesis conditions. Here, we focus on the role of electrolyte additives on the magnetic anisotropy of the electrodeposited nanowires. Through magnetometry and internal field nuclear magnetic resonance (IF NMR) studies, we compared both the magnetic and crystalline structures of 50 and 200 nm diameter Co nanowires synthesized in the presence or absence of organic additives. The spectral characteristics of IF NMR were compared structurally to X-ray diffraction patterns, and the anisotropy of the NMR enhancement factor in ferromagnetic multidomain structures to magnetometry results. While the magnetic behavior of the 50 nm nanowires was dominated, as expected, by shape anisotropy with magnetic domains oriented on axis, the analysis of the 200 nm proved to be more complex. 59Co IF NMR revealed that the determining difference between the samples electrodeposited in the presence or in absence of organic additives was not the dominant crystalline system (fcc or hcp) but the coherent domain sizes and boundaries. In the presence of organic additives, the cobalt crystal domains are smaller and with defective grain boundaries, as revealed by resonances below 210 MHz. This prevented the development in the Co hcp part of the sample of the strong magnetocrystalline anisotropy that was observed in the absence of organic additives. In the presence of organic additives, even in nanowires as wide as 200 nm, the magnetic behavior remained determined by the shape anisotropy with a positive effective magnetic anisotropy and strong anisotropy of the NMR enhancement factor.

2.
Nano Lett ; 21(7): 2968-2974, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33759526

RESUMO

The ongoing COVID-19 pandemic highlights the severe health risks posed by deep submicrometer-sized airborne viruses and particulates in the spread of infectious diseases. There is an urgent need for the development of efficient, durable, and reusable filters for this size range. Here we report the realization of efficient particulate filters using nanowire-based low-density metal foams which combine extremely large surface areas with excellent mechanical properties. The metal foams exhibit outstanding filtration efficiencies (>96.6%) in the PM0.3 regime, with the potential for further improvement. Their mechanical stability, light weight, chemical and radiation resistance, ease of cleaning and reuse, and recyclability further make such metal foams promising filters for combating COVID-19 and other types of airborne particulates.


Assuntos
Filtração/instrumentação , Nanofios , Tamanho da Partícula , SARS-CoV-2/isolamento & purificação
3.
Nanoscale ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39076072

RESUMO

The COVID-19 pandemic has shown the urgent need for the development of efficient, durable, reusable and recyclable filtration media for the deep-submicron size range. Here we demonstrate a multifunctional filtration platform using porous metallic nanowire foams that are efficient, robust, antimicrobial, and reusable, with the potential to further guard against multiple hazards. We have investigated the foam microstructures, detailing how the growth parameters influence the overall surface area and characteristic feature size, as well as the effects of the microstructures on the filtration performance. Nanogranules deposited on the nanowires during electrodeposition are found to greatly increase the surface area, up to 20 m2 g-1. Surprisingly, in the high surface area regime, the overall surface area gained from the nanogranules has little correlation with the improvement in capture efficiency. However, nanowire density and diameter play a significant role in the capture efficiency of PM0.3 particles, as do the surface roughness of the nanowire fibers and their characteristic feature sizes. Antimicrobial tests on the Cu foams show a >99.9995% inactivation efficiency after contacting the foams for 30 seconds. These results demonstrate promising directions to achieve a highly efficient multifunctional filtration platform with optimized microstructures.

4.
Sports Med Open ; 5(1): 1, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30617517

RESUMO

Exercise-induced muscle damage (EIMD) is typically caused by unaccustomed exercise and results in pain, soreness, inflammation, and reduced muscle function. These negative outcomes may cause discomfort and impair subsequent athletic performance or training quality, particularly in individuals who have limited time to recover between training sessions or competitions. In recent years, a multitude of techniques including massage, cryotherapy, and stretching have been employed to combat the signs and symptoms of EIMD, with mixed results. Likewise, many varied nutritional and supplementation interventions intended to treat EIMD-related outcomes have gained prominence in the literature. To date, several review articles have been published that explore the many recovery strategies purported to minimize indirect markers of muscle damage. However, these articles are very limited from a nutritional standpoint. Thus, the purpose of this review is to briefly and comprehensively summarize many of these strategies that have been shown to positively influence the recovery process after damaging exercise. These strategies have been organized into the following sections based on nutrient source: fruits and fruit-derived supplements, vegetables and plant-derived supplements, herbs and herbal supplements, amino acid and protein supplements, vitamin supplements, and other supplements.

5.
Rio de Janeiro; Graal; 1986. 199 p.
Monografia em Português | LILACS, EMS-Acervo | ID: lil-622161
6.
London; University of Pittsburgh; 1979. 200 p. (Pitt Latin American Series).
Monografia em Inglês | Acervo da Biblioteca do Ministério da Saúde | ID: mis-14959
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA