Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Alemão | MEDLINE | ID: mdl-36547697

RESUMO

BACKGROUND: In recent years, whole genome sequencing (WGS) in combination with bioinformatic analyses has become state of the art in evaluating the pathogenicity/resistance potential and relatedness of bacteria. WGS analysis thus represents a central tool in the investigation of the resistance and virulence potential of pathogens, as well as their dissemination via outbreak clusters and transmission chains within the framework of molecular epidemiology. In order to gain an overview of the available genotypic and phenotypic methods used for pathogen typing of Salmonella and Shiga toxin-producing and enterohemorrhagic Escherichia coli (STEC/EHEC) in Germany at state and federal level, along with the availability of WGS-based typing and corresponding analytical methods, a survey of laboratories was conducted. METHODS: An electronic survey of laboratories working for public health protection and consumer health protection was conducted from February to June 2020. RESULTS AND CONCLUSION: The results of the survey showed that many of the participating laboratories provide a wide range of phenotypic and molecular methods. Molecular typing is most commonly used for species identification of Salmonella. In many cases, WGS-based methods have already been established at federal and state institutions or are in the process of being established. The Illumina sequencing technology is the most widely used technology. The survey confirms the importance of molecular biology and whole genome typing technologies for laboratories in the diagnosis of bacterial zoonotic pathogens.


Assuntos
Infecções por Escherichia coli , Salmonella enterica , Humanos , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Salmonella enterica/genética , Alemanha , Sequenciamento Completo do Genoma/métodos , Epidemiologia Molecular
2.
BMC Genomics ; 23(1): 365, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549890

RESUMO

BACKGROUND: Escherichia coli carrying clinically important antimicrobial resistances [i.e., against extended-spectrum-beta-lactamases (ESBL)] are of high concern for human health and are increasingly detected worldwide. Worryingly, they are often identified as multidrug-resistant (MDR) isolates, frequently including resistances against quinolones/fluoroquinolones. RESULTS: Here, the occurrence and genetic basis of the fluoroquinolone resistance enhancing determinant qnrB in ESBL-/non-ESBL-producing E. coli was investigated. Overall, 33 qnrB-carrying isolates out of the annual German antimicrobial resistance (AMR) monitoring on commensal E. coli (incl. ESBL-/AmpC-producing E. coli) recovered from food and livestock between 2013 and 2018 were analysed in detail. Whole-genome sequencing, bioinformatics analyses and transferability evaluation was conducted to characterise the prevailing qnrB-associated plasmids. Furthermore, predominant qnrB-carrying plasmid-types were subjected to in silico genome reconstruction analysis. In general, the qnrB-carrying E. coli were found to be highly heterogenic in their multilocus sequence types (STs) and their phenotypic resistance profiles. Most of them appeared to be MDR and exhibited resistances against up to ten antimicrobials of different classes. With respect to qnrB-carrying plasmids, we found qnrB19 located on small Col440I plasmids to be most widespread among ESBL-producing E. coli from German livestock and food. This Col440I plasmid-type was found to be highly conserved by exhibiting qnrB19, a pspF operon and different genes of unassigned function. Furthermore, we detected plasmids of the incompatibility groups IncN and IncH as carriers of qnrB. All qnrB-carrying plasmids also exhibited virulence factors and various insertion sequences (IS). The majority of the qnrB-carrying plasmids were determined to be self-transmissible, indicating their possible contribution to the spread of resistances against (fluoro)quinolones and other antimicrobials. CONCLUSION: In this study, a diversity of different plasmid types carrying qnrB alone or in combination with other resistance determinants (i.e., beta-lactamase genes) were found. The spread of these plasmids, especially those carrying antimicrobial resistance genes against highest priority critically important antimicrobial agents, is highly unfavourable and can pose a threat for public health. Therefore, the dissemination pathways and evolution of these plasmids need to be further monitored.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Quinolonas , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Transativadores/genética , beta-Lactamases/genética
3.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36264671

RESUMO

A polyphasic taxonomic study was performed on an unidentified previously described Arcanobacterium-like Gram-positive strain 2701T isolated from an anal swab of a dead male harbour seal. Comparative 16S rRNA sequencing showed that the bacterium belonged to the genus Arcanobacterium in the family Arcanobacteriaceae. The genome sequence of the strain was obtained by Borowiak et al. [1]. The genome had a G+C content of 49 mol% and a total length of 1.94 Mb. The presence of the major menaquinone MK-9(H4) supported the affiliation of the isolate with the genus Arcanobacterium. The polar lipid profile consisted of diphosphatidylglycerol and an unidentified phospholipid as major components and two unidentified lipids, a further unidentified phospholipid, two unidentified phosphoglycolipids as well as phosphatidylglycerol. The major fatty acids were C16 : 0, C18 : 1 and C18 : 0. Biochemical and phylogenetic analyses clearly distinguished the isolate from other members of the genus Arcanobacterium and closely related other species. Based on these results, it is proposed that the unknown Arcanobacterium sp. strain 2701T should be classified as representing a novel species with the name Arcanobacterium buesumense sp. nov. The type strain is 2701T (=DSM 112952T=LMG 32446T).


Assuntos
Arcanobacterium , Phoca , Animais , Masculino , RNA Ribossômico 16S/genética , Phoca/microbiologia , Filogenia , Composição de Bases , Técnicas de Tipagem Bacteriana , Vitamina K 2/química , DNA Bacteriano/genética , Cardiolipinas , Análise de Sequência de DNA , Ácidos Graxos/química , Fosfolipídeos/química
4.
BMC Genomics ; 22(1): 822, 2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34773979

RESUMO

BACKGROUND: We benchmarked sequencing technology and assembly strategies for short-read, long-read, and hybrid assemblers in respect to correctness, contiguity, and completeness of assemblies in genomes of Francisella tularensis. Benchmarking allowed in-depth analyses of genomic structures of the Francisella pathogenicity islands and insertion sequences. Five major high-throughput sequencing technologies were applied, including next-generation "short-read" and third-generation "long-read" sequencing methods. RESULTS: We focused on short-read assemblers, hybrid assemblers, and analysis of the genomic structure with particular emphasis on insertion sequences and the Francisella pathogenicity island. The A5-miseq pipeline performed best for MiSeq data, Mira for Ion Torrent data, and ABySS for HiSeq data from eight short-read assembly methods. Two approaches were applied to benchmark long-read and hybrid assembly strategies: long-read-first assembly followed by correction with short reads (Canu/Pilon, Flye/Pilon) and short-read-first assembly along with scaffolding based on long reads (Unicyler, SPAdes). Hybrid assembly can resolve large repetitive regions best with a "long-read first" approach. CONCLUSIONS: Genomic structures of the Francisella pathogenicity islands frequently showed misassembly. Insertion sequences (IS) could be used to perform an evolutionary conservation analysis. A phylogenetic structure of insertion sequences and the evolution within the clades elucidated the clade structure of the highly conservative F. tularensis.


Assuntos
Francisella tularensis , Genoma Bacteriano , Elementos de DNA Transponíveis , Francisella tularensis/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNA
5.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31862714

RESUMO

We compared the performance of four open-source in silico Salmonella typing tools (SeqSero, SeqSero2, Salmonella In Silico Typing Resource [SISTR], and Metric Oriented Sequence Typer [MOST]) to assess their potential for replacing laboratory serological testing with serovar predictions from whole-genome sequencing data. We conducted a retrospective analysis of 1,624 Salmonella isolates of 72 serovars submitted to the German National Salmonella Reference Laboratory between 1999 and 2019. All isolates are derived from animal and foodstuff origins. We conducted Illumina short-read sequencing and compared the in silico serovar prediction results with the results of routine laboratory serotyping. We found the best-performing in silico serovar prediction tool to be SISTR, with 94% correctly typed isolates, followed by SeqSero2 (87%), SeqSero (81%), and MOST (79%). Furthermore, we found that mapping-based tools like SeqSero and SeqSero2 (allele mode) were more reliable for the prediction of monophasic variants, while sequence type and cluster-based methods like MOST and SISTR (core-genome multilocus sequence type [cgMLST]), showed greater resilience when confronted with GC-biased sequencing data. We showed that the choice of library preparation kit could substantially affect O antigen detection, due to the low GC content of the wzx and wzy genes. Although the accuracy of computational serovar predictions is still not quite on par with traditional serotyping by Salmonella reference laboratories, the command-line tools investigated in this study perform a rapid, efficient, inexpensive, and reproducible analysis, which can be integrated into in-house characterization pipelines. Based on our results, we find SISTR most suitable for automated, routine serotyping for public health surveillance of SalmonellaIMPORTANCESalmonella spp. are important foodborne pathogens. To reduce the number of infected patients, it is essential to understand which subtypes of the bacteria cause disease outbreaks. Traditionally, characterization of Salmonella requires serological testing, a laboratory method by which Salmonella isolates can be classified into over 2,600 distinct subtypes, called serovars. Due to recent advances in whole-genome sequencing, many tools have been developed to replace traditional testing methods with computational analysis of genome sequences. It is crucial to validate that these tools, many already in use for routine surveillance, deliver accurate and reliable serovar information. In this study, we set out to compare which of the currently available open-source command-line tools is most suitable to replace serological testing. A thorough evaluation of the differing computational approaches is highly important to ensure the backward compatibility of serotyping data and to maintain comparability between laboratories.


Assuntos
Simulação por Computador , Genoma Bacteriano , Salmonella/genética , Sorotipagem/métodos , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Estudos Retrospectivos , Sequenciamento Completo do Genoma
6.
Int J Syst Evol Microbiol ; 70(7): 4105-4110, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32589570

RESUMO

A polyphasic taxonomic study was performed on an unidentified Arcanobacterium-like Gram-stain-positive bacterium designated strain C605018/01/1T isolated from a milk sample collected from the udder of a cow at post mortem. Comparative 16S rRNA gene sequencing showed that the bacterium belonged to the genus Arcanobacterium and was most closely related to the type strain of Arcanobacterium pluranimalium (99.76 %); sequence similarities to all other Arcanobacterium species were below 97 %. The wet-lab DNA-DNA hybridization values among strain C605018/01/1T and A. pluranimalium DSM 13483ᵀ were low, 16.9 % (reciprocal, 49.8 %). Pertaining to the whole genome sequence with a total length of 2.02 Mb and 1654 protein counts, the novel strain C605018/01/01T displayed a G+C content of 51.6 % mol%. The presence of the major menaquinone MK-9(H4) supported the affiliation of this strain to the genus Arcanobacterium. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol-mannoside and unidentified glycolipid and aminophospholipids. Based on these results it is proposed that strain C605018/01/1T should be classified as representing a novel species, Arcanbacterium bovis sp. nov. The type strain C605018/01/1T (CCUG 45425T=DSM 107286T=BCCM/LMG 30783T).


Assuntos
Arcanobacterium/classificação , Mastite Bovina/microbiologia , Leite/microbiologia , Filogenia , Animais , Arcanobacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Bovinos , DNA Bacteriano/genética , Ácidos Graxos/química , Feminino , Glicolipídeos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química , Sequenciamento Completo do Genoma
7.
Artigo em Inglês | MEDLINE | ID: mdl-30910897

RESUMO

We characterized eight mcr-5-positive Salmonella enterica subsp. enterica serovar Typhimurium sequence type 34 (ST34) isolates obtained from pigs and meat in Germany. Five plasmid types were identified harboring mcr-5 on Tn6452 or putative mobile insertion cassettes. The mobility of mcr-5 was confirmed by integration of Tn6452 into the bacterial chromosomes of two strains and the detection of conjugative mcr-5 plasmids. The association with mobile genetic elements might further enhance mcr-5 distribution.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Etanolaminofosfotransferase/genética , Carne/microbiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/genética , Animais , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Alemanha , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/enzimologia , Suínos
8.
Artigo em Inglês | MEDLINE | ID: mdl-31109975

RESUMO

In 2012, a carbapenemase-producing Salmonella enterica serovar Corvallis isolate carrying a blaNDM-1 multiresistance IncA/C2 plasmid, apart from IncHI2 and ColE-like plasmids, was detected in a wild bird in Germany. In a recent broiler chicken infection study, we observed transfer of this blaNDM-1-carrying IncA/C2 plasmid to other Enterobacteriaceae Here, we focused on the stability of this plasmid and gained insight into the type and frequency of its structural alterations after an in vivo passage in a broiler chicken infection study.


Assuntos
Plasmídeos/genética , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enterica/genética , beta-Lactamases/genética , Animais , Galinhas , Conjugação Genética , Salmonella enterica/patogenicidade , Sequenciamento Completo do Genoma
9.
Euro Surveill ; 24(36)2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31507266

RESUMO

In spring 2016, Greece reported an outbreak caused by a previously undescribed Salmonella enterica subsp. enterica serotype (antigenic formula 11:z41:e,n,z15) via the Epidemic Intelligence Information System for Food- and Waterborne Diseases and Zoonoses (EPIS-FWD), with epidemiological evidence for sesame products as presumptive vehicle. Subsequently, Germany, Czech Republic, Luxembourg and the United Kingdom (UK) reported infections with this novel serotype via EPIS-FWD. Concerned countries in collaboration with the European Centre for Disease Prevention and Control (ECDC) and European Food Safety Authority (EFSA) adopted a common outbreak case definition. An outbreak case was defined as a laboratory-confirmed notification of the novel Salmonella serotype. Between March 2016 and April 2017, 47 outbreak cases were notified (Greece: n = 22; Germany: n = 13; Czech Republic: n = 5; Luxembourg: n = 4; UK: n = 3). Whole genome sequencing revealed the very close genetic relatedness of isolates from all affected countries. Interviews focusing on sesame product consumption, suspicious food item testing and trace-back analysis following Salmonella spp. detection in food products identified a company in Greece where sesame seeds from different countries were processed. Through European collaboration, it was possible to identify and recall sesame spread as one contaminated food item serving as vehicle of infection and trace it back to its origin.


Assuntos
Surtos de Doenças/estatística & dados numéricos , Vigilância da População/métodos , Salmonella enterica/isolamento & purificação , Sesamum/microbiologia , Europa (Continente)/epidemiologia , Humanos , Intoxicação Alimentar por Salmonella/epidemiologia , Infecções por Salmonella/epidemiologia , Salmonella enterica/classificação , Salmonella enterica/genética , Sorogrupo , Sorotipagem , Sequenciamento Completo do Genoma
10.
Artigo em Inglês | MEDLINE | ID: mdl-29437622

RESUMO

The emergence and spread of carbapenemase-producing Enterobacteriaceae (CPE) in wildlife and livestock animals pose an important safety concern for public health. With our in vivo broiler chicken infection study, we investigated the transfer and experimental microevolution of the blaNDM-1-carrying IncA/C2 plasmid (pRH-1238) introduced by avian native Salmonella enterica subsp. enterica serovar Corvallis without inducing antibiotic selection pressure. We evaluated the dependency of the time point of inoculation on donor (S Corvallis [12-SA01738]) and plasmid-free Salmonella recipient [d-tartrate-fermenting (d-Ta+) S Paratyphi B (13-SA01617), referred to here as S Paratyphi B (d-Ta+)] excretion by quantifying their excretion dynamics. Using plasmid profiling by S1 nuclease-restricted pulsed-field gel electrophoresis, we gained insight into the variability of the native plasmid content among S Corvallis reisolates as well as plasmid acquisition in S Paratyphi B (d-Ta+) and the enterobacterial gut microflora. Whole-genome sequencing enabled us to gain an in-depth insight into the microevolution of plasmid pRH-1238 in S Corvallis and enterobacterial recipient isolates. Our study revealed that the fecal excretion of avian native carbapenemase-producing S Corvallis is significantly higher than that of S Paratyphi (d-Ta+) and is not hampered by S Paratyphi (d-Ta+). Acquisition of pRH-1238 in other Enterobacteriaceae and several events of plasmid pRH-1238 transfer to different Escherichia coli sequence types and Klebsiella pneumoniae demonstrated an interspecies broad host range. Regardless of the microevolutionary structural deletions in pRH-1238, the single carbapenem resistance marker blaNDM-1 was maintained on pRH-1238 throughout the trial. Furthermore, we showed the importance of the gut E. coli population as a vector of pRH-1238. In a potential scenario of the introduction of NDM-1-producing S Corvallis into a broiler flock, the pRH-1238 plasmid could persist and spread to a broad host range even in the absence of antibiotic pressure.


Assuntos
Enterobacteriaceae/genética , Salmonella enterica/genética , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Galinhas , Eletroforese em Gel de Campo Pulsado , Enterobacteriaceae/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Salmonella enterica/efeitos dos fármacos , beta-Lactamases/genética
11.
Food Microbiol ; 71: 46-54, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29366468

RESUMO

In Germany salmonellosis still represents the 2nd most common bacterial foodborne disease. The majority of infections are caused by Salmonella (S.) Typhimurium and S. Enteritidis followed by a variety of other broad host-range serovars. Salmonella Derby is one of the five top-ranked serovars isolated from humans and it represents one of the most prevalent serovars in pigs, thus bearing the potential risk for transmission to humans upon consumption of pig meat and products thereof. From November 2013 to January 2014 S. Derby caused a large outbreak that affected 145 primarily elderly people. Epidemiological investigations identified raw pork sausage as the probable source of infection, which was confirmed by microbiological evidence. During the outbreak isolates from patients, food specimen and asymptomatic carriers were investigated by conventional typing methods. However, the quantity and quality of available microbiological and epidemiological data made this outbreak highly suitable for retrospective investigation by Whole Genome Sequencing (WGS) and subsequent evaluation of different bioinformatics approaches for cluster definition. Overall the WGS-based methods confirmed the results of the conventional typing but were of significant higher discriminatory power. That was particularly beneficial for strains with incomplete epidemiological data. For our data set both, single nucleotide polymorphism (SNP)- and core genome multilocus sequence typing (cgMLST)-based methods proved to be appropriate tools for cluster definition.


Assuntos
Doenças Transmitidas por Alimentos/microbiologia , Infecções por Salmonella/microbiologia , Salmonella enterica/isolamento & purificação , Animais , DNA Bacteriano/genética , Surtos de Doenças , Doenças Transmitidas por Alimentos/epidemiologia , Genoma Bacteriano , Alemanha/epidemiologia , Humanos , Produtos da Carne/microbiologia , Tipagem de Sequências Multilocus , Filogenia , Polimorfismo de Nucleotídeo Único , Carne Vermelha/microbiologia , Estudos Retrospectivos , Infecções por Salmonella/epidemiologia , Salmonella enterica/classificação , Salmonella enterica/genética , Sorogrupo , Suínos , Sequenciamento Completo do Genoma
12.
Euro Surveill ; 23(6)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29439754

RESUMO

Background and aimPlasmid-mediated colistin resistance mechanisms have been identified worldwide in the past years. A multiplex polymerase chain reaction (PCR) protocol for detection of all currently known transferable colistin resistance genes (mcr-1 to mcr-5, and variants) in Enterobacteriaceae was developed for surveillance or research purposes. Methods: We designed four new primer pairs to amplify mcr-1, mcr-2, mcr-3 and mcr-4 gene products and used the originally described primers for mcr-5 to obtain a stepwise separation of ca 200 bp between amplicons. The primer pairs and amplification conditions allow for single or multiple detection of all currently described mcr genes and their variants present in Enterobacteriaceae. The protocol was validated testing 49 European Escherichia coli and Salmonella isolates of animal origin. Results: Multiplex PCR results in bovine and porcine isolates from Spain, Germany, France and Italy showed full concordance with whole genome sequence data. The method was able to detect mcr-1, mcr-3 and mcr-4 as singletons or in different combinations as they were present in the test isolates. One new mcr-4 variant, mcr-4.3, was also identified. Conclusions: This method allows rapid identification of mcr-positive bacteria and overcomes the challenges of phenotypic detection of colistin resistance. The multiplex PCR should be particularly interesting in settings or laboratories with limited resources for performing genetic analysis as it provides information on the mechanism of colistin resistance without requiring genome sequencing.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Proteínas de Escherichia coli/genética , Plasmídeos/genética , Salmonella/efeitos dos fármacos , Salmonella/genética , Enterobacteriaceae/isolamento & purificação , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas de Membrana , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase Multiplex , Plasmídeos/metabolismo , Salmonella/isolamento & purificação , Transferases (Outros Grupos de Fosfato Substituídos)
13.
14.
J Antimicrob Chemother ; 72(12): 3317-3324, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28962028

RESUMO

OBJECTIVES: Plasmid-mediated mobilized colistin resistance is currently known to be caused by phosphoethanolamine transferases termed MCR-1, MCR-2, MCR-3 and MCR-4. However, this study focuses on the dissection of a novel resistance mechanism in mcr-1-, mcr-2- and mcr-3-negative d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B (Salmonella Paratyphi B dTa+) isolates with colistin MIC values >2 mg/L. METHODS: A selected isolate from the strain collection of the German National Reference Laboratory for Salmonella was investigated by WGS and bioinformatical analysis to identify novel phosphoethanolamine transferase genes involved in colistin resistance. Subsequently PCR screening, S1-PFGE and DNA-DNA hybridization were performed to analyse the prevalence and location of the identified mcr-5 gene. Cloning and transformation experiments in Escherichia coli DH5α and Salmonella Paratyphi B dTa+ control strains were carried out and the activity of MCR-5 was determined in vitro by MIC testing. RESULTS: In this study, we identified a novel phosphoethanolamine transferase in 14 mcr-1-, mcr-2- and mcr-3-negative Salmonella Paratyphi B dTa+ isolates with colistin MIC values >2 mg/L that were received during 2011-13. The respective gene, further termed as mcr-5 (1644 bp), is part of a 7337 bp transposon of the Tn3 family and usually located on related multi-copy ColE-type plasmids. Interestingly, in one isolate an additional subclone with a chromosomal location of the mcr-5 transposon was observed. CONCLUSIONS: Our findings suggest that the transfer of colistin-resistance-mediating phosphoethanolamine transferase genes from bacterial chromosomes to mobile genetic elements has occurred in multiple independent events raising concern regarding their variety, prevalence and impact on public health.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana , Etanolaminofosfotransferase/genética , Salmonella paratyphi B/efeitos dos fármacos , Salmonella paratyphi B/enzimologia , Clonagem Molecular , Eletroforese em Gel de Campo Pulsado , Escherichia coli/enzimologia , Escherichia coli/genética , Etanolaminofosfotransferase/metabolismo , Fermentação , Alemanha , Testes de Sensibilidade Microbiana , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase , Salmonella paratyphi B/genética , Salmonella paratyphi B/metabolismo , Análise de Sequência de DNA , Tartaratos/metabolismo , Transformação Genética
17.
Microbiol Resour Announc ; 13(1): e0062423, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38099684

RESUMO

Many species of the genus Arcanobacterium are known as opportunistic pathogens and have been isolated in association with infectious diseases in humans and animals. Here, we present the complete genome sequence of another opportunistic pathogenic representative, namely Arcanobacterium canis, isolated from the otitis externa of an English bulldog.

18.
J Clin Microbiol ; 51(3): 973-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23325816

RESUMO

Salmonella enterica subsp. enterica 4,[5],12:i:- is one of the most prevalent serovars associated with human infections worldwide. Two multidrug-resistant clones, designated Spanish and European clones, are recognized as having importance for public health and are subject to control measures in the European Union. In this study, 23 clinical isolates belonging to the Spanish clone were characterized by multilocus sequence typing, multiple-locus variable number tandem repeat analysis (MLVA), PCR amplification and sequencing, and a DNA microarray targeting 263 genes, in order to provide new insights into their origins and further evolution. The derived data were compared with information available from other studies for S. 4,[5],12:i:- isolates of both the Spanish and the European clones, to identify differential molecular markers which could be potentially used as surveillance tools in the control of dissemination of this serovar. The isolates analyzed were assigned to sequence type 19 and to 17 MLVA patterns, with 3-13-16-NA-311 being the most prevalent. Highly similar virulence, metabolic, and prophage-associated gene profiles were identified, but DNA mobility markers distinguished five genotypes. Two types of deletions, caused by insertion of IS26, presumably donated by pUO-STmR/RV1-like plasmids typically found in the Spanish clone, affected the fljAB operon and surrounding DNA. The Spanish and European clones differ in sequence type, MLVA patterns, gene repertoire, and fljAB deletion type. The observed variability supports an independent evolution of the two successful monophasic clones from different Salmonella enterica serovar Typhimurium ancestors and can be taken into consideration for epidemiological surveillance.


Assuntos
Tipagem de Bacteriófagos , Evolução Molecular , Tipagem Molecular , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Salmonella typhimurium/classificação , Salmonella typhimurium/genética , Genes Bacterianos , Marcadores Genéticos , Variação Genética , Humanos , Prófagos/genética , Salmonella typhimurium/isolamento & purificação , Espanha/epidemiologia , Fatores de Virulência/genética
20.
Appl Environ Microbiol ; 79(17): 5121-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23793625

RESUMO

Salmonella enterica serovar 4,[5],12:b:- is a monophasic serovar not able to express the second-phase flagellar antigen (H2 antigen). In Germany, the serovar is occasionally isolated from poultry, reptiles, fish, food, and humans. In this study, a selection of 67 epidemiologically unrelated Salmonella enterica serovar 4,[5],12:b:- strains isolated in Germany between 2000 and 2011 from the environment, animal, food, and humans was investigated by phenotypic and genotypic methods to better understand the population structure and to identify potential sources of human infections. Strains of this monophasic serovar were highly diverse. Within the 67 strains analyzed, we identified 52 different pulsed-field gel electrophoresis XbaI profiles, 12 different multilocus sequence types (STs), and 18 different pathogenicity array types. The relatedness of strains based on the pathogenicity gene repertoire (102 markers tested) was in good agreement with grouping by MLST. S. enterica serovar 4,[5],12:b:- is distributed across multiple unrelated eBurst groups and consequently is highly polyphyletic. Two sequence types (ST88 and ST127) were linked to S. enterica serovar Paratyphi B (d-tartrate positive), two single-locus variants of ST1583 were linked to S. enterica serovar Abony, and one sequence type (ST1484) was associated with S. enterica serovar Mygdal, a recently defined, new serovar. From the characterization of clinical isolates and those of nonhuman origin, it can be concluded that the potential sources of sporadic human infections with S. enterica serovar 4,[5],12:b:- most likely are mushrooms, shellfish/fish, and poultry.


Assuntos
Variação Genética , Infecções por Salmonella/microbiologia , Salmonella enterica/classificação , Salmonella enterica/genética , Animais , Técnicas de Tipagem Bacteriana , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Microbiologia Ambiental , Microbiologia de Alimentos , Alemanha , Humanos , Epidemiologia Molecular , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase , Salmonelose Animal/microbiologia , Salmonella enterica/isolamento & purificação , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA