Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
FEBS Lett ; 581(25): 4871-6, 2007 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17888908

RESUMO

Our recent molecular studies revealed two divergent PEP-carboxylase (PEPC [Ppc]) encoding genes in the green microalga Chlamydomonas reinhardtii, CrPpc1 and CrPpc2, which are coordinately responsive to changes in inorganic-N and -C supply at the transcript level [Mamedov, T.G., Moellering, E.R. and Chollet, R. (2005) Identification and expression analysis of two inorganic C- and N-responsive genes encoding novel and distinct molecular forms of eukaryotic phosphoenolpyruvate carboxylase in the green microalga C. reinhardtii, Plant J. 42, 832-843]. Here, we report the distribution of these two encoded catalytic subunits in the minor Class-1 and predominant Class-2 PEPC enzyme-forms, the latter of which is a novel high-molecular-mass, hetero-oligomeric complex containing both CrPpc1 (p109) and CrPpc2 (p131) polypeptides. The Class-1 enzyme, however, is a typical PEPC homotetramer comprised solely of p109. We also document that the amount of both CrPpc1/2 catalytic subunits is up-/down-regulated by varying levels of NH(4)(+) supplied to the culture medium.


Assuntos
Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/enzimologia , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas de Algas/química , Proteínas de Algas/imunologia , Animais , Especificidade de Anticorpos , Domínio Catalítico , Meios de Cultura , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Fosfoenolpiruvato Carboxilase/química , Fosfoenolpiruvato Carboxilase/imunologia , Desnaturação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/imunologia , Subunidades Proteicas/metabolismo , Compostos de Amônio Quaternário/metabolismo , Zea mays/enzimologia
2.
J Biotechnol ; 131(4): 379-87, 2007 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-17875333

RESUMO

The assembly of synthetic oligonucleotides into genes and genomes is an important methodology. Several methodologies for such synthesis have been developed, but they have two drawbacks: (1) the processes are slow and (2) the error frequencies are high (typically 1-3 errors/kb of DNA). Thermal damage is a major contributor to biosynthetic errors. In this paper, we elucidate the advantages of rapid gene synthesis by polymerase chain assembly (PCA) when used in combination with smart error control strategies. We used a high-speed thermocycler (PCRJet) to effectively minimize thermal damage and to perform rapid assembly of synthetic oligonucleotides to construct two different genes: endothelial protein C receptor (EPCR) and endothelial cell thrombin receptor, thrombomodulin (TM). First, the intact EPCR gene (EPCR-1, 612 bp) and a mutant EPCR-2 (576 bp) that lacked 4 N-linked glycosylation sites were constructed from 35 and 33 oligonucleotides, respectively. Next, for direct error comparison, another longer gene, the 1548 bp TM gene was constructed from 87 oligonucleotides by both rapid and conventional PCA. The fidelity and accuracy of the synthetic genes generated in this manner were confirmed by sequencing. The combined steps of PCA and DNA amplification are completed in about 10 and 22 min for EPCR-1, 2 and TM genes, respectively with comparable low errors in the DNA sequence. Furthermore, we subcloned synthetic TM, EPCR-1, EPCR-2 and native EPCR-1 (amplified from cDNA) into a Pichia pastoris expression vector to evaluate the expression ability, and to compare them with the native gene. Here, we illustrate that the synthetic genes, assembled by rapid PCA, successfully directed the expression of functional proteins. And, importantly, the synthetic and the native genes expressed proteins with the same efficiency.


Assuntos
Fatores de Coagulação Sanguínea/genética , Regulação da Expressão Gênica , Reação em Cadeia da Polimerase/métodos , Receptores de Superfície Celular/genética , Receptores de Trombina/genética , Humanos , Mutação/genética , Pichia , Proteínas Recombinantes/genética , Temperatura , Fatores de Tempo
3.
J Tissue Eng Regen Med ; 5(10): 815-22, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22002925

RESUMO

Both pulsed- and square-wave, low-intensity ultrasound (US) signals have been reported to impact chondrocyte function and biosynthetic activity. In this study, a low-intensity diffuse ultrasound (LIDUS) signal at 5.0 MHz (0.14 mW/cm(2)) was employed to stimulate bovine chondrocytes seeded in three-dimensional (3D) chitosan-based matrices. While the duration of application was constant at 51 s, US was applied once, twice, four times and eight times/day, and the impacts of US on the biosynthetic activity of chondrocytes and the expression of chondrocyte-specific genes were evaluated. When stimulated with continuous US for predetermined time intervals, chondrocytes had higher levels of type II collagen, aggrecan, L-Sox5 and Sox9 mRNA expression when compared to controls; however, under the same conditions, the expression of MMP-3 was downregulated. Interestingly, both Sox5 and Sox9 genes coordinately responded to changes in US stimulation and generally mirrored the response of collagen type II transcript to changes in US stimulation. RT-PCR analysis revealed that US stimulation increased the gene expression of cell-surface integrins α5 and ß1. The expression of integrins α2 was downregulated by US treatment, suggesting that multiple integrin subunits may be involved in the regulation of chondrocytic function in response to US stimuli. The enhancement in the abundance of the mRNA transcripts upon US stimulation was observed to correlate with the protein expression of collagen type I, collagen type II, and integrins α5 and ß1. In conclusion, the US stimulation regimen employed was shown to modulate the proliferative capacity, biosynthetic activity and integrin mRNA expression of articular chondrocytes maintained in 3D matrices.


Assuntos
Antígenos de Diferenciação/biossíntese , Cartilagem Articular/metabolismo , Quitosana/química , Condrócitos/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/biossíntese , Som , Alicerces Teciduais/química , Animais , Cartilagem Articular/citologia , Bovinos , Células Cultivadas , Condrócitos/citologia
4.
J Chromatogr Sci ; 48(2): 120-4, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20109289

RESUMO

Polymerase chain assembly (PCA) is a powerful tool for basic biological research and biotechnology applications. During the last several years, major advances have been made in de novo gene synthesis. However, there is still a need for fast and reproducible methods to automatically purify the synthesized genes. Upon completion of PCA, the subsequent PCR-amplified product mixture still contains undesired shorter DNA fragments that hinder cloning efforts. To avoid tedious gel purification, an automated two-column purification has been developed and used in conjunction with rapid PCA. The system enables fast synthesis and isolation of the full-length DNA of interest, important for facile cloning of desired DNA fragments. During the PCR amplification step, forward and reverse primers tagged with iminobiotin and bromodeoxyuridine labels, respectively, were used. The automated purification was then performed on the PCR mixture using two affinity/immunocapture columns in series to isolate only the desired full-length product. The procedure has been applied to the pUC19 beta-lactamase gene (929 bp). Follow-up PCR of the purified product, cloning, and sequencing demonstrated the technique's effectiveness in obtaining the pure full-length gene. The purification has also been performed on other synthesized genes, indicating its utility as a general approach.


Assuntos
Marcadores de Afinidade/química , Biotina/análogos & derivados , Bromodesoxiuridina/isolamento & purificação , Cromatografia de Afinidade/métodos , DNA/isolamento & purificação , Genes , Biotina/química , Bromodesoxiuridina/química , Clonagem Molecular , DNA/genética , Reação em Cadeia da Polimerase , beta-Lactamases/genética
5.
J Microbiol Methods ; 79(3): 295-300, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19799938

RESUMO

Polymerase chain assembly (PCA) is a technique used to synthesize genes ranging from a few hundred base pairs to many kilobase pairs in length. In traditional PCA, equimolar concentrations of single stranded DNA oligonucleotides are repeatedly hybridized and extended by a polymerase enzyme into longer dsDNA constructs, with relatively few full-length sequences being assembled. Thus, traditional PCA is followed by a second primer-mediated PCR reaction to amplify the desired full-length sequence to useful, detectable quantities. Integration of assembly and primer-mediated amplification steps into a single reaction using a high-speed thermocycler is shown to produce similar results. For the integrated technique, the effects of oligo concentration, primer concentration, and number of oligonucleotides are explored. The technique is successfully demonstrated for the synthesis of two genes encoding EPCR-1 (653bp) and pUC19 beta-lactamase (929bp) in under 20min. However, rapid integrated PCA-PCR was found to be problematic when attempted with the TM-1 gene (1509bp). Partial oligonucleotide sets of TM-1 could be assembled and amplified simultaneously, indicating that the technique may be limited to a maximum number of oligonucleotides due to competitive annealing and competition for primers.


Assuntos
Genes Sintéticos , Oligonucleotídeos/síntese química , Reação em Cadeia da Polimerase/métodos , Eletroforese em Gel de Ágar , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo
6.
J Plant Res ; 121(2): 235-43, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18288562

RESUMO

The gene encoding the small heat shock protein (sHSP), LeHSP21.5, has been previously cloned from tomato (GenBank accession no. AB026983). The deduced amino acid sequence of this tomato sHSP was most similar to that of other endoplasmic reticulum (ER)-localized sHSPs (ER-sHSP) and can be predicted to target the ER. We examined whether the gene product of LeHSP21.5 (probable ER-sHSP) can act as molecular chaperone. For functional analysis, LeHSP21.5 protein was expressed in Escherichia coli as His(6)-tagged protein in the C-terminal and purified. We confirmed that ER-sHSP could provide thermal protection of soluble proteins in vitro. We compared the thermal stability of E. coli strain BL21 (DE3) transformed with pET-ER-sHSP with the control E. coli strain BL21(DE3) transformed with only the pET vector under heat shock and IPTG-induced conditions. Most of the protein extracts from E. coli cells expressing ER-sHSP were protected from heat-induced denaturation, whereas extracts from cells not expressing ER-sHSP were very heat-sensitive under these conditions. A similar protective effect was observed when purified ER-sHSP was added to an E. coli cell extract. ER-sHSP prevented the thermal aggregation and inactivation of citrate synthase. These collective findings indicate that ER-sHSP can function as a molecular chaperone in vitro.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Sequência de Aminoácidos , Citrato (si)-Sintase/metabolismo , Proteínas de Escherichia coli/metabolismo , Temperatura Alta , Dados de Sequência Molecular , Proteínas de Plantas/isolamento & purificação , Desnaturação Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
7.
Plant J ; 42(6): 832-43, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15941397

RESUMO

Phosphoenolpyruvate carboxylase (PEPC [Ppc]) has been previously purified and characterized in biochemical and immunological terms from two green microalgae, Chlamydomonas reinhardtii and Selenastrum minutum. The findings indicate that these algae possess at least two distinct PEPC enzyme-forms, homotetrameric Class-1 and heteromeric Class-2, that differ significantly from each other and their plant and prokaryotic counterparts. Surprisingly, however, green-algal PEPC has been unexplored to date in molecular terms. This study reports the molecular cloning of the two Ppc genes in C. reinhardtii (CrPpc1, CrPpc2), each of which is transcribed in vivo and encodes a fully active, recombinant PEPC that lacks the regulatory, N-terminal seryl-phosphorylation domain that typifies the vascular-plant enzyme. These distinct catalytic subunit-types differ with respect to their (i) predicted molecular mass ( approximately 108.9 [CrPpc1] versus approximately 131.2 kDa [CrPpc2]) and critical C-terminal tetrapeptide; and (ii) immunoreactivity with antisera against the p102 and p130 polypeptides of S. minutum PEPC1/PEPC2 and PEPC2, respectively. Only the Ppc1 transcript encodes the p102 catalytic subunits common to both Class-1 and Class-2 enzyme-forms in C. reinhardtii. The steady-state transcript levels of both CrPpc1/2 are coordinately up-/down-regulated by changes in [CO2] or [NH] during growth, and generally mirror the response of cytoplasmic glutamine synthetase (Gs1) transcript abundance to changes in inorganic [N] at 5% CO2. These collective findings provide key molecular insight into the Ppc genes and corresponding PEPC catalytic subunits in the eukaryotic algae.


Assuntos
Carbono/fisiologia , Chlamydomonas reinhardtii/enzimologia , Chlamydomonas reinhardtii/genética , Nitrogênio/fisiologia , Fosfoenolpiruvato Carboxilase/genética , Sequência de Aminoácidos , Animais , Isoenzimas , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA