Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 57(34): 5136-5144, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30053375

RESUMO

The release of insulin from the pancreas is tightly controlled by glucokinase (GCK) activity that couples ß-cell metabolism to changes in blood sugar. Despite having only a single glucose-binding site, GCK displays positive glucose cooperativity. Ex vivo structural studies have identified several potential protein conformations with varying levels of enzymatic activity, yet it is unclear how living cells regulate GCK cooperativity. To better understand the cellular regulation of GCK activation, we developed a homotransfer Förster resonance energy transfer (FRET) GCK biosensor and used polarization microscopy to eliminate fluorescence crosstalk from FRET quantification and improve the signal-to-noise ratio. This approach enhanced sensor contrast compared to that seen with the heterotransfer FRET GCK reporter and allowed observation of individual GCK states using an automated method to analyze FRET data at the pixel level. Mutations known to activate and inhibit GCK activity produced distinct anisotropy distributions, suggesting that at least two conformational states exist in living cells. A high glucose level activated the biosensor in a manner consistent with GCK's enzymology. Interestingly, glucose-free conditions did not affect GCK biosensor FRET, indicating that there is a single low-activity state, which is counter to proposed structural models of GCK cooperativity. Under low-glucose conditions, application of chemical NO donors efficiently shifted GCK to the more active conformation. Notably, GCK activation by mutation, a high glucose level, a pharmacological GCK activator, or S-nitrosylation all shared the same FRET distribution. These data suggest a simplified model for GCK activation in living cells, where post-translational modification of GCK by S-nitrosylation facilitates a single conformational transition that enhances GCK enzymatic activity.


Assuntos
Glucoquinase/metabolismo , Glucose/química , Glucose/metabolismo , Células Secretoras de Insulina/enzimologia , Óxido Nítrico/metabolismo , Células Cultivadas , Ativação Enzimática , Transferência Ressonante de Energia de Fluorescência , Glucoquinase/química , Glucoquinase/genética , Humanos , Mutação , Conformação Proteica
2.
J Biol Chem ; 292(26): 10961-10972, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28487373

RESUMO

SERCA1, the sarco(endo)plasmic reticulum Ca2+-ATPase of skeletal muscle, is essential for muscle relaxation and maintenance of low resting Ca2+ levels in the myoplasm. We recently reported that small ankyrin 1 (sAnk1) interacts with the sarco(endo)plasmic reticulum Ca2+-ATPase in skeletal muscle (SERCA1) to inhibit its activity. We also showed that this interaction is mediated at least in part through sAnk1's transmembrane domain in a manner similar to that of sarcolipin (SLN). Earlier studies have shown that SLN and phospholamban, the other well studied small SERCA-regulatory proteins, oligomerize either alone or together. As sAnk1 is coexpressed with SLN in muscle, we sought to determine whether these two proteins interact with one another when coexpressed exogenously in COS7 cells. Coimmunoprecipitation (coIP) and anisotropy-based FRET (AFRET) assays confirmed this interaction. Our results indicated that sAnk1 and SLN can associate in the sarcoplasmic reticulum membrane and after exogenous expression in COS7 cells in vitro but that their association did not require endogenous SERCA2. Significantly, SLN promoted the interaction between sAnk1 and SERCA1 when the three proteins were coexpressed, and both coIP and AFRET experiments suggested the formation of a complex consisting of all three proteins. Ca2+-ATPase assays showed that sAnk1 ablated SLN's inhibition of SERCA1 activity. These results suggest that sAnk1 interacts with SLN both directly and in complex with SERCA1 and reduces SLN's inhibitory effect on SERCA1 activity.


Assuntos
Anquirinas/metabolismo , Proteínas Musculares/metabolismo , Proteolipídeos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Anquirinas/genética , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas Musculares/genética , Proteolipídeos/genética , Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
3.
Retrovirology ; 12: 85, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26438393

RESUMO

BACKGROUND: Latent HIV-1 reservoirs are identified as one of the major challenges to achieve HIV-1 cure. Currently available strategies are associated with wide variability in outcomes both in patients and CD4(+) T cell models. This underlines the critical need to develop innovative strategies to predict and recognize ways that could result in better reactivation and eventual elimination of latent HIV-1 reservoirs. RESULTS AND DISCUSSION: In this study, we combined genome wide transcriptome datasets post activation with Systems Biology approach (Signaling and Dynamic Regulatory Events Miner, SDREM analyses) to reconstruct a dynamic signaling and regulatory network involved in reactivation mediated by specific activators using a latent cell line. This approach identified several critical regulators for each treatment, which were confirmed in follow-up validation studies using small molecule inhibitors. Results indicate that signaling pathways involving JNK and related factors as predicted by SDREM are essential for virus reactivation by suberoylanilide hydroxamic acid. ERK1/2 and NF-κB pathways have the foremost role in reactivation with prostratin and TNF-α, respectively. JAK-STAT pathway has a central role in HIV-1 transcription. Additional evaluation, using other latent J-Lat cell clones and primary T cell model, also confirmed that many of the cellular factors associated with latency reversing agents are similar, though minor differences are identified. JAK-STAT and NF-κB related pathways are critical for reversal of HIV-1 latency in primary resting T cells. CONCLUSION: These results validate our combinatorial approach to predict the regulatory cellular factors and pathways responsible for HIV-1 reactivation in latent HIV-1 harboring cell line models. JAK-STAT have a role in reversal of latency in all the HIV-1 latency models tested, including primary CD4(+) T cells, with additional cellular pathways such as NF-κB, JNK and ERK 1/2 that may have complementary role in reversal of HIV-1 latency.


Assuntos
HIV-1/fisiologia , Ativação Viral/efeitos dos fármacos , Ativação Viral/genética , Latência Viral/genética , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD4-Positivos/virologia , Perfilação da Expressão Gênica/métodos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Ácidos Hidroxâmicos/farmacologia , Células Jurkat , Masculino , Ésteres de Forbol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Biologia de Sistemas/métodos , Fator de Necrose Tumoral alfa , Latência Viral/efeitos dos fármacos , Vorinostat
4.
bioRxiv ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38854028

RESUMO

Ras homolog family member A (RhoA) acts as a signaling hub in many cellular processes, including cytoskeletal dynamics, division, migration, and adhesion. RhoA activity is tightly spatiotemporally controlled, but whether downstream effectors share these activation dynamics is unknown. We developed a novel single-color FRET biosensor to measure Rho-associated kinase (ROCK) activity with high spatiotemporal resolution in live cells. We report the validation of the Rho-Kinase Activity Reporter (RhoKAR) biosensor. RhoKAR activation was specific to ROCK activity and was insensitive to other kinases. We then assessed the mechanisms of ROCK activation in mouse fibroblasts. Increasing intracellular calcium with ionomycin increased RhoKAR activity, and depleting intracellular calcium with EGTA decreased RhoKAR activity. We also investigated the signaling intermediates in this process. Blocking calmodulin or CaMKII prevented calcium-dependent activation of ROCK. These results indicate that ROCK activity is increased by calcium in fibroblasts and that this activation occurs downstream of CaM/CaMKII.

5.
Biosensors (Basel) ; 8(4)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314323

RESUMO

Förster resonance energy transfer (FRET) between fluorophores of the same species was recognized in the early to mid-1900s, well before modern heterotransfer applications. Recently, homotransfer FRET principles have re-emerged in biosensors that incorporate genetically encoded fluorescent proteins. Homotransfer offers distinct advantages over the standard heterotransfer FRET method, some of which are related to the use of fluorescence polarization microscopy to quantify FRET between two fluorophores of identical color. These include enhanced signal-to-noise, greater compatibility with other optical sensors and modulators, and new design strategies based upon the clustering or dimerization of singly-labeled sensors. Here, we discuss the theoretical basis for measuring homotransfer using polarization microscopy, procedures for data collection and processing, and we review the existing genetically-encoded homotransfer biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde/química , Microscopia de Fluorescência
6.
Cell Syst ; 5(6): 638-645.e5, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29128333

RESUMO

Although cytokine-dependent dynamics of nuclear factor κB (NF-κB) are known to encode information that regulates cell fate decisions, it is unclear whether single-cell responses are switch-like or encode more information about cytokine dose. Here, we measure the dynamic subcellular localization of NF-κB in response to a range of tumor necrosis factor (TNF) stimulation conditions to determine the prevailing mechanism of single-cell dose discrimination. Using an information theory formalism that accounts for signaling dynamics and non-responsive cell subpopulations, we find that the information transmission capacity of single cells exceeds that predicted from a switch-like response. Instead, we observe that NF-κB dynamics within single cells contain sufficient information to encode multiple, TNF-dependent cellular states, and have an activation threshold that varies across the population. By comparing single-cell responses to an internal, experimentally observed reference, we demonstrate that cells can grade responses to TNF across several orders of magnitude in concentration. This suggests that cells contain additional control points to fine-tune their cytokine responses beyond the decision to activate.


Assuntos
Núcleo Celular/metabolismo , NF-kappa B/metabolismo , Animais , Citocinas/metabolismo , Humanos , Imunização , Teoria da Informação , Modelos Imunológicos , Transporte Proteico , Transdução de Sinais , Análise de Célula Única , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA