Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383258

RESUMO

The autonomic nervous system (ANS) and pain exhibit a reciprocal relationship, where acute pain triggers ANS responses, whereas resting ANS activity can influence pain perception. Nociceptive signalling can also be altered by 'top-down' processes occurring in the brain, brainstem and spinal cord, known as 'descending modulation'. By employing the conditioned pain modulation (CPM) paradigm, we previously revealed a connection between reduced low-frequency heart rate variability and CPM. Individuals with chronic pain often experience both ANS dysregulation and impaired CPM. Baroreceptors, which contribute to blood pressure and heart rate variability regulation, may play a significant role in this relationship, although their involvement in pain perception and their functioning in chronic pain have not been sufficiently explored. In the present study, we combined artificial 'baroreceptor stimulation' in both pressure pain and CPM paradigms, seeking to explore the role of baroreceptors in pain perception and descending modulation. In total, 22 individuals with chronic low back pain (CLBP) and 29 individuals with no-pain (NP) took part in the present study. We identified a differential modulation of baroreceptor stimulation on pressure pain between the groups of NP and CLBP participants. Specifically, NP participants perceived less pain in response to baroreflex activation, whereas CLBP participants exhibited increased pain sensitivity. CPM scores were associated with baseline measures of baroreflex sensitivity in both CLBP and NP participants. Our data support the importance of the baroreflex in chronic pain and a possible mechanism of dysregulation involving the interaction between the ANS and descending pain modulation. KEY POINTS: Baroreflex stimulation has different effects on pressure pain in participants with chronic pain compared to matched individuals with no-pain. Baroreceptor activation decreases pain in participants with no-pain but increases pain perception in participants with chronic pain. Baroreflex sensitivity is associated with conditioned pain modulation in both groups of chronic pain and no-pain participants. The reactivity of the baroreflex during autonomic stress demonstrated a positive correlation with Pain Trait scores in participants with chronic back pain.

2.
Neuroimage ; 257: 119327, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636227

RESUMO

Limitations in the accuracy of brain pathways reconstructed by diffusion MRI (dMRI) tractography have received considerable attention. While the technical advances spearheaded by the Human Connectome Project (HCP) led to significant improvements in dMRI data quality, it remains unclear how these data should be analyzed to maximize tractography accuracy. Over a period of two years, we have engaged the dMRI community in the IronTract Challenge, which aims to answer this question by leveraging a unique dataset. Macaque brains that have received both tracer injections and ex vivo dMRI at high spatial and angular resolution allow a comprehensive, quantitative assessment of tractography accuracy on state-of-the-art dMRI acquisition schemes. We find that, when analysis methods are carefully optimized, the HCP scheme can achieve similar accuracy as a more time-consuming, Cartesian-grid scheme. Importantly, we show that simple pre- and post-processing strategies can improve the accuracy and robustness of many tractography methods. Finally, we find that fiber configurations that go beyond crossing (e.g., fanning, branching) are the most challenging for tractography. The IronTract Challenge remains open and we hope that it can serve as a valuable validation tool for both users and developers of dMRI analysis methods.


Assuntos
Conectoma , Substância Branca , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Difusão , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos
3.
Mov Disord ; 37(4): 724-733, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34936123

RESUMO

BACKGROUND: Even though Parkinson's disease (PD) is typically viewed as largely affecting gray matter, there is growing evidence that there are also structural changes in the white matter. Traditional connectomics methods that study PD may not be specific to underlying microstructural changes, such as myelin loss. OBJECTIVE: The primary objective of this study is to investigate the PD-induced changes in myelin content in the connections emerging from the basal ganglia and the brainstem. For the weighting of the connectome, we used the longitudinal relaxation rate as a biologically grounded myelin-sensitive metric. METHODS: We computed the myelin-weighted connectome in 35 healthy control subjects and 81 patients with PD. We used partial least squares to highlight the differences between patients with PD and healthy control subjects. Then, a ring analysis was performed on selected brainstem and subcortical regions to evaluate each node's potential role as an epicenter for disease propagation. Then, we used behavioral partial least squares to relate the myelin alterations with clinical scores. RESULTS: Most connections (~80%) emerging from the basal ganglia showed a reduced myelin content. The connections emerging from potential epicentral nodes (substantia nigra, nucleus basalis of Meynert, amygdala, hippocampus, and midbrain) showed significant decrease in the longitudinal relaxation rate (P < 0.05). This effect was not seen for the medulla and the pons. CONCLUSIONS: The myelin-weighted connectome was able to identify alteration of the myelin content in PD in basal ganglia connections. This could provide a different view on the importance of myelination in neurodegeneration and disease progression. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Conectoma , Doença de Parkinson , Substância Branca , Humanos , Imageamento por Ressonância Magnética , Bainha de Mielina , Doença de Parkinson/diagnóstico por imagem , Substância Negra , Substância Branca/diagnóstico por imagem
4.
Neuroimage ; 243: 118502, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34433094

RESUMO

White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.


Assuntos
Imagem de Tensor de Difusão/métodos , Dissecação/métodos , Substância Branca/diagnóstico por imagem , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Vias Neurais/diagnóstico por imagem
5.
Neuroimage ; 182: 351-359, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28917698

RESUMO

Microstructural imaging and connectomics are two research areas that hold great potential for investigating brain structure and function. Combining these two approaches can lead to a better and more complete characterization of the brain as a network. The aim of this work is characterizing the connectome from a novel perspective using the myelination measure given by the g-ratio. The g-ratio is the ratio of the inner to the outer diameters of a myelinated axon, whose aggregated value can now be estimated in vivo using MRI. In two different datasets of healthy subjects, we reconstructed the structural connectome and then used the g-ratio estimated from diffusion and magnetization transfer data to characterize the network structure. Significant characteristics of g-ratio weighted graphs emerged. First, the g-ratio distribution across the edges of the graph did not show the power-law distribution observed using the number of streamlines as a weight. Second, connections involving regions related to motor and sensory functions were the highest in myelin content. We also observed significant differences in terms of the hub structure and the rich-club organization suggesting that connections involving hub regions present higher myelination than peripheral connections. Taken together, these findings offer a characterization of g-ratio distribution across the connectome in healthy subjects and lay the foundations for further investigating plasticity and pathology using a similar approach.


Assuntos
Axônios , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Bainha de Mielina , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
6.
Neuroimage ; 175: 365-378, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29635028

RESUMO

Since early days after stroke, the brain undergoes a complex reorganization to allow compensatory mechanisms that promote functional recovery. However, these mechanisms are still poorly understood and there is urgent need to identify neurophysiological markers of functional recovery after stroke. Here we aimed to track longitudinally the time-course of cortical reorganization by measuring for the first time EEG cortical activity evoked by TMS pulses in patients with subcortical stroke. Thirteen patients in the sub-acute phase of ischemic subcortical stroke with motor symptoms completed the longitudinal study, being evaluated within 20 days and after 40, 60 and 180 days after stroke onset. For each time-point, EEG cortical activity evoked by single TMS pulses was assessed over the motor and parietal cortex of the affected and unaffected hemisphere. We evaluated global TMS-evoked activity and TMS-evoked oscillations in different frequency bands. These measurements were paralleled with clinical and behavioral assessment. We found that motor cortical activity measured by TMS-EEG varied across time in the affected hemisphere. An increase of TMS-evoked activity was evident at 40 days after stroke onset. Moreover, stroke patients showed a significant increase in TMS-evoked alpha oscillations, as highlighted performing analysis in the time-frequency domain. Notably, these changes indicated that crucial mechanisms of cortical reorganization occur in this short-time window. These changes coincided with the clinical improvement. TMS-evoked alpha oscillatory activity recorded at baseline was associated to better functional recovery at 40 and 60 days' follow-up evaluations, suggesting that the power of the alpha rhythm can be considered a good predictor of motor recovery. This study demonstrates that cortical activity increases dynamically in the early phases of recovery after stroke in the affected hemisphere. These findings point to TMS-evoked alpha oscillatory activity as a potential neurophysiological markers of stroke recovery and could be helpful to determine the temporal window in which neuromodulation should be potentially able to drive neuroplasticity in an effective functional direction.


Assuntos
Ritmo alfa/fisiologia , Eletroencefalografia/métodos , Córtex Motor/fisiopatologia , Plasticidade Neuronal/fisiologia , Paresia/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Substância Branca/patologia , Idoso , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Paresia/etiologia , Lobo Parietal/fisiopatologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia
7.
Neuroimage ; 169: 302-311, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277405

RESUMO

Memory loss is one of the first symptoms of typical Alzheimer's disease (AD), for which there are no effective therapies available. The precuneus (PC) has been recently emphasized as a key area for the memory impairment observed in early AD, likely due to disconnection mechanisms within large-scale networks such as the default mode network (DMN). Using a multimodal approach we investigated in a two-week, randomized, sham-controlled, double-blinded trial the effects of high-frequency repetitive transcranial magnetic stimulation (rTMS) of the PC on cognition, as measured by the Alzheimer Disease Cooperative Study Preclinical Alzheimer Cognitive Composite in 14 patients with early AD (7 females). TMS combined with electroencephalography (TMS-EEG) was used to detect changes in brain connectivity. We found that rTMS of the PC induced a selective improvement in episodic memory, but not in other cognitive domains. Analysis of TMS-EEG signal revealed an increase of neural activity in patients' PC, an enhancement of brain oscillations in the beta band and a modification of functional connections between the PC and medial frontal areas within the DMN. Our findings show that high-frequency rTMS of the PC is a promising, non-invasive treatment for memory dysfunction in patients at early stages of AD. This clinical improvement is accompanied by modulation of brain connectivity, consistently with the pathophysiological model of brain disconnection in AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Ritmo beta/fisiologia , Neuroimagem Funcional/métodos , Transtornos da Memória/fisiopatologia , Memória Episódica , Lobo Parietal/fisiopatologia , Sintomas Prodrômicos , Estimulação Magnética Transcraniana/métodos , Idoso , Feminino , Humanos , Masculino
8.
Brain Topogr ; 30(3): 312-319, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28293801

RESUMO

It has been shown that continuous theta burst stimulation (cTBS) over the precuneus acts on specific memory retrieval abilities. In order to study the neural mechanisms beyond these findings, we combined cTBS and resting-state functional magnetic resonance imaging. Our experimental protocol involved stimulation and sham conditions on a group of healthy subjects, and each condition included a baseline and two follow-up acquisitions (5 and 15 min after baseline) after cTBS. We analysed brain functional connectivity by means of graph theoretical measures, with a specific focus on the network modular structure. Our results showed that cTBS of the precuneus selectively affects the left temporal pole, decreasing its functional connectivity in the first follow-up. Moreover, we observed a significant increase in the size of the module of the precuneus in the second follow-up. Such effects were absent in the sham condition. We observed here a modulation of functional connectivity as a result of inhibitory stimulation over the precuneus. Such a modulation first acts indirectly on the temporal area and then extends the connectivity of the precuneus itself by a feed-back mechanism. Our current findings extend our previous behavioural observations and increase our understanding of the mechanisms underlying the stimulation of the precuneus.


Assuntos
Lobo Parietal/fisiologia , Lobo Temporal/fisiologia , Ritmo Teta/fisiologia , Adulto , Encéfalo/fisiologia , Retroalimentação , Feminino , Neuroimagem Funcional , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória , Inibição Neural , Vias Neurais , Lobo Parietal/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
9.
Neuroimage ; 140: 57-65, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27268424

RESUMO

Transcranial direct current stimulation (tDCS) is a neuromodulation technique that can alter cortical excitability and modulate behaviour in a polarity-dependent way. Despite the widespread use of this method in the neuroscience field, its effects on ongoing local or global (network level) neuronal activity are still not foreseeable. A way to shed light on the neuronal mechanisms underlying the cortical connectivity changes induced by tDCS is provided by the combination of tDCS with electroencephalography (EEG). In this study, twelve healthy subjects underwent online tDCS-EEG recording (i.e., simultaneous), during resting-state, using 19 EEG channels. The protocol involved anodal, cathodal and sham stimulation conditions, with the active and the reference electrodes in the left frontocentral area (FC3) and on the forehead over the right eyebrow, respectively. The data were processed using a network model, based on graph theory and the synchronization likelihood. The resulting graphs were analysed for four frequency bands (theta, alpha, beta and gamma) to evaluate the presence of tDCS-induced differences in synchronization patterns and graph theory measures. The resting state network connectivity resulted altered during tDCS, in a polarity-specific manner for theta and alpha bands. Anodal tDCS weakened synchronization with respect to the baseline over the fronto-central areas in the left hemisphere, for theta band (p<0.05). In contrast, during cathodal tDCS a significant increase in inter-hemispheric synchronization connectivity was observed over the centro-parietal, centro-occipital and parieto-occipital areas for the alpha band (p<0.05). Local graph measures showed a tDCS-induced polarity-specific differences that regarded modifications of network activities rather than specific region properties. Our results show that applying tDCS during the resting state modulates local synchronization as well as network properties in slow frequency bands, in a polarity-specific manner.


Assuntos
Algoritmos , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiologia , Excitabilidade Cortical/fisiologia , Sincronização Cortical/fisiologia , Modelos Neurológicos , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Neural Plast ; 2016: 2696085, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313901

RESUMO

The adult form of myotonic dystrophy type 1 (DM1) presents with paradoxical inconsistencies between severity of brain damage, relative preservation of cognition, and failure in everyday life. This study, based on the assessment of brain connectivity and mechanisms of plasticity, aimed at reconciling these conflicting issues. Resting-state functional MRI and graph theoretical methods of analysis were used to assess brain topological features in a large cohort of patients with DM1. Patients, compared to controls, revealed reduced connectivity in a large frontoparietal network that correlated with their isolated impairment in visuospatial reasoning. Despite a global preservation of the topological properties, peculiar patterns of frontal disconnection and increased parietal-cerebellar connectivity were also identified in patients' brains. The balance between loss of connectivity and compensatory mechanisms in different brain networks might explain the paradoxical mismatch between structural brain damage and minimal cognitive deficits observed in these patients. This study provides a comprehensive assessment of brain abnormalities that fit well with both motor and nonmotor clinical features experienced by patients in their everyday life. The current findings suggest that measures of functional connectivity may offer the possibility of characterizing individual patients with the potential to become a clinical tool.


Assuntos
Transtornos Cognitivos/patologia , Conectoma , Distrofia Miotônica/patologia , Rede Nervosa/patologia , Adulto , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Cognição/fisiologia , Transtornos Cognitivos/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia
11.
Materials (Basel) ; 17(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793239

RESUMO

It is demonstrated that the application of piezoelectric sensors to metallic bars and strands can enable determining the status of the integrity of these elements through the spectrum of their acoustic excitations. The voltage output of the piezo, secured to metal bars or strands, is fed to the input of a Fast Fourier Transform analyzer, which allows displaying the spectrum of the excitations from which information on the length, overall quality of the metal, and the presence of defects can be obtained. We show that the analysis, performed on several materials and strands of different lengths, could be useful for cases in which visible inspection and/or direct access to the entire body of the metallic elements is not possible. Applications of our study for testing metallic structures embedded in concrete foundations are reported for construction sites.

12.
bioRxiv ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39282320

RESUMO

Magnetic resonance imaging (MRI) is the standard tool to image the human brain in vivo. In this domain, digital brain atlases are essential for subject-specific segmentation of anatomical regions of interest (ROIs) and spatial comparison of neuroanatomy from different subjects in a common coordinate frame. High-resolution, digital atlases derived from histology (e.g., Allen atlas [7], BigBrain [13], Julich [15]), are currently the state of the art and provide exquisite 3D cytoarchitectural maps, but lack probabilistic labels throughout the whole brain. Here we present NextBrain, a next-generation probabilistic atlas of human brain anatomy built from serial 3D histology and corresponding highly granular delineations of five whole brain hemispheres. We developed AI techniques to align and reconstruct ~10,000 histological sections into coherent 3D volumes with joint geometric constraints (no overlap or gaps between sections), as well as to semi-automatically trace the boundaries of 333 distinct anatomical ROIs on all these sections. Comprehensive delineation on multiple cases enabled us to build the first probabilistic histological atlas of the whole human brain. Further, we created a companion Bayesian tool for automated segmentation of the 333 ROIs in any in vivo or ex vivo brain MRI scan using the NextBrain atlas. We showcase two applications of the atlas: automated segmentation of ultra-high-resolution ex vivo MRI and volumetric analysis of Alzheimer's disease and healthy brain ageing based on ~4,000 publicly available in vivo MRI scans. We publicly release: the raw and aligned data (including an online visualisation tool); the probabilistic atlas; the segmentation tool; and ground truth delineations for a 100 µm isotropic ex vivo hemisphere (that we use for quantitative evaluation of our segmentation method in this paper). By enabling researchers worldwide to analyse brain MRI scans at a superior level of granularity without manual effort or highly specific neuroanatomical knowledge, NextBrain holds promise to increase the specificity of MRI findings and ultimately accelerate our quest to understand the human brain in health and disease.

13.
Simul Synth Med Imaging ; 12965: 44-54, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34778892

RESUMO

Nonlinear inter-modality registration is often challenging due to the lack of objective functions that are good proxies for alignment. Here we propose a synthesis-by-registration method to convert this problem into an easier intra-modality task. We introduce a registration loss for weakly supervised image translation between domains that does not require perfectly aligned training data. This loss capitalises on a registration U-Net with frozen weights, to drive a synthesis CNN towards the desired translation. We complement this loss with a structure preserving constraint based on contrastive learning, which prevents blurring and content shifts due to overfitting. We apply this method to the registration of histological sections to MRI slices, a key step in 3D histology reconstruction. Results on two public datasets show improvements over registration based on mutual information (13% reduction in landmark error) and synthesis-based algorithms such as CycleGAN (11% reduction), and are comparable to registration with label supervision. Code and data are publicly available at https://github.com/acasamitjana/SynthByReg.

14.
Brain Struct Funct ; 226(8): 2651-2663, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34390416

RESUMO

Network models based on structural connectivity have been increasingly used as the blueprint for large-scale simulations of the human brain. As the nodes of this network are distributed through the cortex and interconnected by white matter pathways with different characteristics, modeling the associated conduction delays becomes important. The goal of this study is to estimate and characterize these delays directly from the brain structure. To achieve this, we leveraged microstructural measures from a combination of advanced magnetic resonance imaging acquisitions and computed the main determinants of conduction velocity, namely axonal diameter and myelin content. Using the model proposed by Rushton, we used these measures to calculate the conduction velocity and estimated the associated delays using tractography. We observed that both the axonal diameter and conduction velocity distributions presented a rather constant trend across different connection lengths, with resulting delays that scale linearly with the connection length. Relying on insights from graph theory and Kuramoto simulations, our results support the approximation of constant conduction velocity but also show path- and region-specific differences.


Assuntos
Encéfalo , Substância Branca , Axônios , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
15.
Netw Neurosci ; 5(2): 358-372, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34189369

RESUMO

Myelin plays a crucial role in how well information travels between brain regions. Complementing the structural connectome, obtained with diffusion MRI tractography, with a myelin-sensitive measure could result in a more complete model of structural brain connectivity and give better insight into white-matter myeloarchitecture. In this work we weight the connectome by the longitudinal relaxation rate (R1), a measure sensitive to myelin, and then we assess its added value by comparing it with connectomes weighted by the number of streamlines (NOS). Our analysis reveals differences between the two connectomes both in the distribution of their weights and the modular organization. Additionally, the rank-based analysis shows that R1 can be used to separate transmodal regions (responsible for higher-order functions) from unimodal regions (responsible for low-order functions). Overall, the R1-weighted connectome provides a different perspective on structural connectivity taking into account white matter myeloarchitecture.

16.
Mult Scler Relat Disord ; 56: 103224, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34461571

RESUMO

BACKGROUND: brainstem monoaminergic (dopaminergic, noradrenergic, and serotoninergic) nuclei (BrMn) contain a variety of ascending neurons that diffusely project to the whole brain, crucially regulating normal brain function. BrMn are directly affected in multiple sclerosis (MS) by inflammation and neurodegeneration. Moreover, inflammation reduces the synthesis of monoamines. Aberrant monoaminergic neurotransmission contributes to the pathogenesis of MS and explains some clinical features of MS. We used resting-state functional MRI (RS-fMRI) to characterize abnormal patterns of BrMn functional connectivity (FC) in MS. METHODS: BrMn FC was studied with multi-echo RS-fMRI in n = 68 relapsing-remitting MS patients and n = 39 healthy controls (HC), by performing a seed-based analysis, after producing standard space seed masks of the BrMn. FC was assessed between ventral tegmental area (VTA), locus coeruleus (LC), median raphe (MR), dorsal raphe (DR), and the rest of the brain and compared between MS patients and HC. Between-group comparisons were carried out only within the main effect observed in HC, setting p<0.05 family-wise-error corrected (FWE). RESULTS: in HC, VTA displayed FC with the core regions of the default-mode network. As compared to HC, MS patients showed altered FC between VTA and posterior cingulate cortex (p<0.05FWE). LC displayed FC with core regions of the executive-control network with a reduced functional connection between LC and right prefrontal cortex in MS patients (p<0.05FWE). Raphe nuclei was functionally connected with cerebellar cortex, with a significantly lower FC between these nuclei and cerebellum in MS patients, as compared to HC (p<0.05FWE). CONCLUSIONS: our study demonstrated in MS patients a functional disconnection between BrMn and cortical/subcortical efferent targets of central brain networks, possibly due to a loss or a dysregulation of BrMn neurons. This adds new information about how monoaminergic systems contribute to MS pathogenesis and suggests new potential therapeutic targets.


Assuntos
Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Tronco Encefálico/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem
17.
Neuroimage Clin ; 30: 102587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33610097

RESUMO

In multiple sclerosis (MS), monoaminergic systems are altered as a result of both inflammation-dependent reduced synthesis and direct structural damage. Aberrant monoaminergic neurotransmission is increasingly considered a major contributor to fatigue pathophysiology. In this study, we aimed to compare the integrity of the monoaminergic white matter fibre tracts projecting from brainstem nuclei in a group of patients with MS (n = 68) and healthy controls (n = 34), and to investigate its association with fatigue. Fibre tracts integrity was assessed with the novel fixel-based analysis that simultaneously estimates axonal density, by means of 'fibre density', and white matter atrophy, by means of fibre 'cross section'. We focused on ventral tegmental area, locus coeruleus, and raphe nuclei as the main source of dopaminergic, noradrenergic, and serotoninergic fibres within the brainstem, respectively. Fourteen tracts of interest projecting from these brainstem nuclei were reconstructed using diffusion tractography, and compared by means of the product of fibre-density and cross-section (FDC). Finally, correlations of monoaminergic axonal damage with the modified fatigue impact scale scores were evaluated in MS. Fixel-based analysis revealed significant axonal damage - as measured by FDC reduction - within selective monoaminergic fibre-tracts projecting from brainstem nuclei in MS patients, in comparison to healthy controls; particularly within the dopaminergic-mesolimbic pathway, the noradrenergic-projections to prefrontal cortex, and serotoninergic-projections to cerebellum. Moreover, we observed significant correlations between severity of cognitive fatigue and axonal damage within the mesocorticolimbic tracts projecting from ventral tegmental area, as well as within the locus coeruleus projections to prefrontal cortex, suggesting a potential contribution of dopaminergic and noradrenergic pathways to central fatigue in MS. Our findings support the hypothesis that axonal damage along monoaminergic pathways contributes to the reduction/dysfunction of monoamines in MS and add new information on the mechanisms by which monoaminergic systems contribute to MS pathogenesis and fatigue. This supports the need for further research into monoamines as therapeutic targets aiming to combat and alleviate fatigue in MS.


Assuntos
Esclerose Múltipla , Substância Branca , Tronco Encefálico/diagnóstico por imagem , Cognição , Imagem de Tensor de Difusão , Humanos
18.
Neuron ; 109(11): 1769-1775, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33932337

RESUMO

Brainhack is an innovative meeting format that promotes scientific collaboration and education in an open, inclusive environment. This NeuroView describes the myriad benefits for participants and the research community and how Brainhacks complement conventional formats to augment scientific progress.


Assuntos
Comunicação , Internet , Neurociências/organização & administração , Congressos como Assunto , Guias de Prática Clínica como Assunto
19.
Gigascience ; 10(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34414422

RESUMO

As the global health crisis unfolded, many academic conferences moved online in 2020. This move has been hailed as a positive step towards inclusivity in its attenuation of economic, physical, and legal barriers and effectively enabled many individuals from groups that have traditionally been underrepresented to join and participate. A number of studies have outlined how moving online made it possible to gather a more global community and has increased opportunities for individuals with various constraints, e.g., caregiving responsibilities. Yet, the mere existence of online conferences is no guarantee that everyone can attend and participate meaningfully. In fact, many elements of an online conference are still significant barriers to truly diverse participation: the tools used can be inaccessible for some individuals; the scheduling choices can favour some geographical locations; the set-up of the conference can provide more visibility to well-established researchers and reduce opportunities for early-career researchers. While acknowledging the benefits of an online setting, especially for individuals who have traditionally been underrepresented or excluded, we recognize that fostering social justice requires inclusivity to actively be centered in every aspect of online conference design. Here, we draw from the literature and from our own experiences to identify practices that purposefully encourage a diverse community to attend, participate in, and lead online conferences. Reflecting on how to design more inclusive online events is especially important as multiple scientific organizations have announced that they will continue offering an online version of their event when in-person conferences can resume.

20.
Psychophysiology ; 58(7): e13688, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33037836

RESUMO

Understanding the association between autonomic nervous system [ANS] function and brain morphology across the lifespan provides important insights into neurovisceral mechanisms underlying health and disease. Resting-state ANS activity, indexed by measures of heart rate [HR] and its variability [HRV] has been associated with brain morphology, particularly cortical thickness [CT]. While findings have been mixed regarding the anatomical distribution and direction of the associations, these inconsistencies may be due to sex and age differences in HR/HRV and CT. Previous studies have been limited by small sample sizes, which impede the assessment of sex differences and aging effects on the association between ANS function and CT. To overcome these limitations, 20 groups worldwide contributed data collected under similar protocols of CT assessment and HR/HRV recording to be pooled in a mega-analysis (N = 1,218 (50.5% female), mean age 36.7 years (range: 12-87)). Findings suggest a decline in HRV as well as CT with increasing age. CT, particularly in the orbitofrontal cortex, explained additional variance in HRV, beyond the effects of aging. This pattern of results may suggest that the decline in HRV with increasing age is related to a decline in orbitofrontal CT. These effects were independent of sex and specific to HRV; with no significant association between CT and HR. Greater CT across the adult lifespan may be vital for the maintenance of healthy cardiac regulation via the ANS-or greater cardiac vagal activity as indirectly reflected in HRV may slow brain atrophy. Findings reveal an important association between CT and cardiac parasympathetic activity with implications for healthy aging and longevity that should be studied further in longitudinal research.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Frequência Cardíaca/fisiologia , Longevidade/fisiologia , Adulto , Espessura Cortical do Cérebro , Estudos Transversais , Feminino , Humanos , Masculino , Metanálise como Assunto , Córtex Pré-Frontal/fisiologia , Nervo Vago
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA