Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093350

RESUMO

Sewage sludge (SS) recycling is an important part of the proposed 'circular economy' concept. SS can be valorized via torrefaction (also known as 'low-temperature pyrolysis' or 'roasting'). SS can, therefore, be considered a low-quality fuel or a source of nutrients essential for plant growth. Biochar produced by torrefaction of SS is a form of carbonized fuel or fertilizer. In this research, for the first time, we tested the feasibility of torrefaction of SS with high ash content for either fuel or organic fertilizer production. The research was conducted in 18 variants (six torrefaction temperatures between 200~300 °C, and three process residence times of 20, 40, 60 min) in 5 repetitions. Fuel and fertilizer properties and multiple regression analysis of produced biochar were conducted. The higher heating value (HHV) of raw SS was 21.2 MJ·kg-1. Produced biochar was characterized by HHV up to 12.85 MJ·kg-1 and lower H/C and O/C molar ratio. Therefore, torrefaction of SS with high ash content should not be considered as a method for improving the fuel properties. Instead, the production of fertilizer appears to be favorable. The torrefaction increased C, N, Mg, Ca, K, Na concentration in relation to raw SS. No significant (p < 0.05) influence of the increase of temperature and residence time on the increase of biogenic elements in biochar was found, however the highest biogenic element content, were found in biochar produced for 60 min, under the temperature ranging from 200 to 240 °C. Obtained biochars met the Polish regulatory criteria for mineral-organic fertilizer. Therefore SS torrefaction may be considered a feasible waste recycling technology. The calculation of torrefaction energy and the mass balance shows energy demand <2.5 GJ∙Mg-1 w.m., and the expected mass yield of the product, organic fertilizer, is ~178 kg∙Mg-1 w.m of SS. Further investigation should consider the scaling-up of the SS torrefaction process, with the application of other types of SSs.

2.
Materials (Basel) ; 13(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796663

RESUMO

Improved technologies are needed for sustainable management of sewage sludge (SS). The torrefaction (also known as biomass "roasting") is considered a pretreatment of SS before use in agriculture. However, it is not known whether the torrefaction has the potential to decrease heavy metals' (HMs) leachability and the SS toxicity. Thus, the aim of the study was to evaluate the influences of the SS torrefaction parameters (temperature and process time) on HM contents in biochar, HM leachability, and biochar toxicity, and compare them with raw SS. The experiments were designed in 18 combinations (six temperatures, 200, 220, 240, 260, 280, and 300 °C; and three process times-20, 40, 60 min). Standard tests were used to determine HMs content, leachability, and toxicity. Results indicated that the torrefaction did not increase (p < 0.05) the HM content in comparison to the raw SS. The leachability of Zn, Ni, Cu, Cr, and Mn from SS biochars was similar to raw SS. However, the degree of leachability varied significantly (p < 0.05) from as low as 0.1% for Cu to high as 16.7% for Cd. The leachability of Cd (<16.7%) and Pb (<11.9%) from biochars was higher than from raw SS (<6.1% and <2.4%, respectively). The leachability of Cd from SS biochar, in five torrefaction combinations, was higher than the threshold value for hazardous waste. It is recommended that site-specific decisions are made for torrefaction of SS with respect to its HM content, as the resulting biochar could be considered as hazardous waste, depending on the feedstock. Moreover, the biochar produced under the whole range of temperatures during 20 min retention time significantly (p < 0.05) increased the Daphnia magna Straus mobility inhibition by up to 100% in comparison to the biochar obtained during 40 and 60 min torrefaction. Taking into account the increased leachability of specific HMs and D. magna Straus mobility inhibition, biochar should be considered a potentially hazardous material. Future research should focus on biochar dosage as a fertilizer in relation to its toxicity. Additional research is warranted to focus on the optimization of SS torrefaction process parameters affecting the toxicity.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30764569

RESUMO

In this research, we explore for the first time the use of leaf stomatal conductance (gs) for phytotoxicity assessment. Plants respond to stress by regulating transpiration. Transpiration can be correlated with stomatal conductance when the water vapor pressure gradient for transpiration is constant. Thus, our working hypothesis was that the gs measurement could be a useful indicator of the effect of toxic compounds on plants. This lab-scale study aimed to test the measurement of gs as a phytotoxicity indicator. Our model plants were two common hydrophytes used in zero-effluent constructed wetlands for treating landfill leachate. The toxic influence of two types of leachate from old landfills (L1, L2) on common reed (Phragmites australis (Cav.) Trin. ex Steud.) and sweet flag (Acorus calamus L.) was tested. The gs measurements correlated well with plant response to treatments with six solutions (0 to 100%) of landfill leachate. Sweet flag showed higher tolerance to leachate solutions compared to common reed. The estimated lowest effective concentration (LOEC) causing the toxic effect values for these leachates were 3.94% of L1 and 5.76% of L2 in the case of reed, and 8.51% of L1 and 10.44% of L2 in the case of sweet flag. Leachate L1 was more toxic than L2. The leaf stomatal conductance measurement can be conducted in vivo and in the field. The proposed approach provides a useful parameter for indicating plant responses to the presence of toxic factors in the environment.


Assuntos
Conservação dos Recursos Hídricos/métodos , Monitoramento Ambiental/métodos , Estômatos de Plantas/efeitos dos fármacos , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/toxicidade , Áreas Alagadas , Acorus/efeitos dos fármacos , Acorus/fisiologia , Fenômenos Eletrofisiológicos , Estômatos de Plantas/fisiologia , Poaceae/efeitos dos fármacos , Poaceae/fisiologia , Testes de Toxicidade , Poluição Química da Água/efeitos adversos , Poluição Química da Água/prevenção & controle
4.
Artigo em Inglês | MEDLINE | ID: mdl-31438480

RESUMO

This study aimed to assess the efficiency of removal of volatile organic compounds (VOCs) from process gases from a food industry plant in East Poland, producing high-quality animal (goose, duck, and pig) and vegetable fats, using a two-stage method which is a combination of biological purification and membrane-separation. The research, conducted on the semi-technical scale, compared the effects of traditional and two-stage biofiltration carried out under the same process conditions. The concentrations of VOCs in process gases were measured by means of a multi-gas detector. Additionally the temperature and humidity of gases were determined by a thermoanemometer under filter bed, following the EU and Polish National Standard Methods Two different types of filling materials (the mix of stumpwood chips and bark, and the mix of stumpwood chips, bark, and compost) and two types of membranes (three-layer semi-permeable membrane fabrics were used, with differences in air permeability and water tightness) were analyzed. During all processes basic operational parameters, the biofilters were controlled, including surface load, volumetric load, duration of gas contact with the filling layer, flow rate, and pressure drops (in the biofilter and on the membrane). The analyzed gases were characterized by very high variability of VOC concentrations (ranging from 350 ppb to 11,170 ppb). The effectiveness of VOC removal (REvoc) was calculated by comparing the analytical results of raw and purified gases. The effectiveness of VOC removal with the application of traditional biofiltration during the experiment varied between 82% to 97% and was related to different parameters of the filling materials (mainly specific surface and moisture), reaching lower value for the mix of stumpwood chips and bark filling. The obtained results showed that the application of membrane improved the efficiency of biofiltration in all the analysed cases from 7% to 9%. The highest effectiveness was obtained using the filter bed in the form of stumpwood chips, bark, and compost in connection with the more permeable membrane. It was maintained between 96% to 99%, reaching an average value of 98%. The selection of the membrane should be determined by its permeability and the values of flow resistance.


Assuntos
Poluentes Atmosféricos , Gorduras , Indústria Alimentícia , Compostos Orgânicos Voláteis , Poluição do Ar/prevenção & controle , Animais , Compostagem , Filtração/métodos , Gases , Umidade , Membranas Artificiais , Casca de Planta , Temperatura
5.
Waste Manag ; 70: 91-100, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28951151

RESUMO

The influence of Refuse Derived Fuel (RDF)/Solid Recovery Fuel (SRF) torrefaction temperature on product characteristic was investigated. RDF/SRF thermal treatment experiment was conducted with 1-h residence time, under given temperatures: 200, 220, 240, 260, 280 and 300°C. Sawdust was used as reference material. The following parameters of torrefaction char from sawdust and Carbonized Refuse Derived Fuel (CRDF) from RDF/SRF were measured: moisture, calorific value, ash content, volatile compounds and sulfur content. Sawdust biochar was confirmed as a good quality solid fuel, due to significant fuel property increase. The study also indicated that RDF torrefaction reduced moisture significantly from 22.9% to 1.4% and therefore increased lower heating value (LHV) from 19.6 to 25.3MJ/kg. Results suggest that RDF torrefaction may be a good method for increasing attractiveness of RDF as an energy source, and it could help unify RDF properties on the market.


Assuntos
Eliminação de Resíduos/métodos , Temperatura , Resíduos , Centrais Elétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA