Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 582(7810): 134, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32483375

RESUMO

A Retraction to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 570(7761): E51, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31127195

RESUMO

Change history: In this Letter, the citation to 'Fig. 4e, f' in the main text should be 'Fig. 3e, f'. This has not been corrected online.

3.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38279277

RESUMO

Endometrial cancer is the most frequent malignant tumor of the female reproductive tract but lacks effective therapy. EphA2, a receptor tyrosine kinase, is overexpressed by various cancers including endometrial cancer and is associated with poor clinical outcomes. In preclinical models, EphA2-targeted drugs had modest efficacy. To discover potential synergistic partners for EphA2-targeted drugs, we performed a high-throughput drug screen and identified panobinostat, a histone deacetylase inhibitor, as a candidate. We hypothesized that combination therapy with an EphA2 inhibitor and panobinostat leads to synergistic cell death. Indeed, we found that the combination enhanced DNA damage, increased apoptosis, and decreased clonogenic survival in Ishikawa and Hec1A endometrial cancer cells and significantly reduced tumor burden in mouse models of endometrial carcinoma. Upon RNA sequencing, the combination was associated with downregulation of cell survival pathways, including senescence, cyclins, and cell cycle regulators. The Axl-PI3K-Akt-mTOR pathway was also decreased by combination therapy. Together, our results highlight EphA2 and histone deacetylase as promising therapeutic targets for endometrial cancer.


Assuntos
Neoplasias do Endométrio , Inibidores de Histona Desacetilases , Receptor EphA2 , Animais , Feminino , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Inibidores de Histona Desacetilases/uso terapêutico , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Fosfatidilinositol 3-Quinases , Terapia de Alvo Molecular , Receptor EphA2/antagonistas & inibidores
4.
Mol Ther ; 30(11): 3462-3476, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-35965413

RESUMO

MicroRNA miR-29 promotes endothelial function in human arterioles in part by targeting LYPLA1 and increasing nitric oxide production. In addition, miR-29 is a master inhibitor of extracellular matrix gene expression, which may attenuate fibrosis but could also weaken tissue structure. The goal of this study was to test whether miR-29 could be developed as an effective, broad-acting, and safe therapeutic. Substantial accumulation of miR-29b and effective knockdown of Lypla1 in several mouse tissues were achieved using a chitosan-packaged, chemically modified miR-29b mimic (miR-29b-CH-NP) injected systemically at 200 µg/kg body weight. miR-29b-CH-NP, injected once every 3 days, significantly attenuated angiotensin II-induced hypertension. In db/db mice, miR-29b-CH-NP treatment for 12 weeks decreased cardiac and renal fibrosis and urinary albuminuria. In uninephrectomized db/db mice, miR-29b-CH-NP treatment for 20 weeks significantly improved myocardial performance index and attenuated proteinuria. miR-29b-CH-NP did not worsen abdominal aortic aneurysm in ApoE knockout mice treated with angiotensin II. miR-29b-CH-NP caused aortic root fibrotic cap thinning in ApoE knockout mice fed a high-cholesterol and high-fat diet but did not worsen the necrotic zone or mortality. In conclusion, systemic delivery of low-dose miR-29b-CH-NP is an effective therapeutic for several forms of cardiovascular and renal disease in mice.


Assuntos
Quitosana , Complicações do Diabetes , Diabetes Mellitus , Hipertensão , MicroRNAs , Camundongos , Humanos , Animais , Angiotensina II/efeitos adversos , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Knockout para ApoE , Modelos Animais de Doenças , Hipertensão/genética , Hipertensão/terapia , Fibrose , Camundongos Endogâmicos , Tioléster Hidrolases
5.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835335

RESUMO

EphA2 tyrosine kinase is upregulated in many cancers and correlated with poor survival of patients, including those with endometrial cancer. EphA2-targeted drugs have shown modest clinical benefit. To improve the therapeutic response to such drugs, we performed a high-throughput chemical screen to discover novel synergistic partners for EphA2-targeted therapeutics. Our screen identified the Wee1 kinase inhibitor, MK1775, as a synergistic partner to EphA2, and this finding was confirmed using both in vitro and in vivo experiments. We hypothesized that Wee1 inhibition would sensitize cells to EphA2-targeted therapy. Combination treatment decreased cell viability, induced apoptosis, and reduced clonogenic potential in endometrial cancer cell lines. In vivo Hec1A and Ishikawa-Luc orthotopic mouse models of endometrial cancer showed greater anti-tumor responses to combination treatment than to either monotherapy. RNASeq analysis highlighted reduced cell proliferation and defective DNA damage response pathways as potential mediators of the combination's effects. In conclusion, our preclinical findings indicate that Wee1 inhibition can enhance the response to EphA2-targeted therapeutics in endometrial cancer; this strategy thus warrants further development.


Assuntos
Antineoplásicos , Neoplasias do Endométrio , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Receptor EphA2 , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/uso terapêutico , Apoptose , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Endométrio/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Receptor EphA2/antagonistas & inibidores
6.
Gynecol Oncol ; 163(1): 181-190, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34391578

RESUMO

BACKGROUND: Our pilot clinical study of EphA2 inhibitor (dasatinib) plus paclitaxel and carboplatin showed interesting clinical activity in endometrial cancer with manageable toxicity. However, the underlying mechanisms of dasatinib resistance in uterine cancer are unknown. Here, we investigated potential mechanisms underlying resistance to EphA2 inhibitors in uterine cancer and examined the anti-tumor activity of EphA2 inhibitors alone and in combination with a MEK inhibitor. METHODS: We evaluated the antitumor activity of EphA2 inhibitors plus a MEK inhibitor using in vitro and in vivo orthotopic models of uterine cancer. RESULTS: EphA2 inhibitor induced MAPK in dasatinib-resistant uterine cancer cells (HEC-1A and Ishikawa) and BRAF/CRAF heterodimerization in HEC-1A cells. EphA2 inhibitor and trametinib significantly increased apoptosis in cancer cells resistant to EphA2 inhibitors compared with controls (p < 0.01). An in vivo study with the orthotopic HEC-1A model showed significantly greater antitumor response to combination treatment compared with dasatinib alone (p < 0.01). Combination treatment increased EphrinA1 and BIM along with decreased pMAPK, Jagged 1, and c-MYC expression in dasatinib-resistant cells. In addition, Spearman analysis using the TCGA data revealed that upregulation of EphA2 was significantly correlated with JAG1, MYC, NOTCH1, NOTCH3 and HES1 expression (p < 0.001, r = 0.25-0.43). Specifically, MAP3K15 and the NOTCH family genes were significantly related to poor clinical outcome in patients with uterine cancer. CONCLUSIONS: These findings indicate that the MAPK pathway is activated in dasatinib-resistant uterine cancer cells and that EphrinA1-mediated MEK inhibition overcomes dasatinib resistance. Dual targeting of both EphA2 and MEK, combined with chemotherapy, should be considered for future clinical development.


Assuntos
Dasatinibe/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Receptor EphA2/antagonistas & inibidores , Neoplasias Uterinas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dasatinibe/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Piridonas/administração & dosagem , Piridonas/uso terapêutico , Pirimidinonas/administração & dosagem , Pirimidinonas/uso terapêutico , Receptor EphA2/fisiologia
7.
Genome Res ; 27(7): 1112-1125, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28411194

RESUMO

RNA editing, a widespread post-transcriptional mechanism, has emerged as a new player in cancer biology. Recent studies have reported key roles for individual miRNA editing events, but a comprehensive picture of miRNA editing in human cancers remains largely unexplored. Here, we systematically characterized the miRNA editing profiles of 8595 samples across 20 cancer types from miRNA sequencing data of The Cancer Genome Atlas and identified 19 adenosine-to-inosine (A-to-I) RNA editing hotspots. We independently validated 15 of them by perturbation experiments in several cancer cell lines. These miRNA editing events show extensive correlations with key clinical variables (e.g., tumor subtype, disease stage, and patient survival time) and other molecular drivers. Focusing on the RNA editing hotspot in miR-200b, a key tumor metastasis suppressor, we found that the miR-200b editing level correlates with patient prognosis opposite to the pattern observed for the wild-type miR-200b expression. We further experimentally showed that, in contrast to wild-type miRNA, the edited miR-200b can promote cell invasion and migration through its impaired ability to inhibit ZEB1/ZEB2 and acquired concomitant ability to repress new targets, including LIFR, a well-characterized metastasis suppressor. Our study highlights the importance of miRNA editing in gene regulation and suggests its potential as a biomarker for cancer prognosis and therapy.


Assuntos
Genes Supressores de Tumor , MicroRNAs/metabolismo , Neoplasias/metabolismo , Edição de RNA , RNA Neoplásico/metabolismo , Adenosina/genética , Adenosina/metabolismo , Feminino , Humanos , Inosina/genética , Inosina/metabolismo , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/genética , Subunidade alfa de Receptor de Fator Inibidor de Leucemia/metabolismo , Masculino , MicroRNAs/genética , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , RNA Neoplásico/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
8.
Nature ; 512(7515): 431-5, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25043055

RESUMO

Bone-resorbing osteoclasts significantly contribute to osteoporosis and bone metastases of cancer. MicroRNAs play important roles in physiology and disease, and present tremendous therapeutic potential. Nonetheless, how microRNAs regulate skeletal biology is underexplored. Here we identify miR-34a as a novel and critical suppressor of osteoclastogenesis, bone resorption and the bone metastatic niche. miR-34a is downregulated during osteoclast differentiation. Osteoclastic miR-34a-overexpressing transgenic mice exhibit lower bone resorption and higher bone mass. Conversely, miR-34a knockout and heterozygous mice exhibit elevated bone resorption and reduced bone mass. Consequently, ovariectomy-induced osteoporosis, as well as bone metastasis of breast and skin cancers, are diminished in osteoclastic miR-34a transgenic mice, and can be effectively attenuated by miR-34a nanoparticle treatment. Mechanistically, we identify transforming growth factor-ß-induced factor 2 (Tgif2) as an essential direct miR-34a target that is pro-osteoclastogenic. Tgif2 deletion reduces bone resorption and abolishes miR-34a regulation. Together, using mouse genetic, pharmacological and disease models, we reveal miR-34a as a key osteoclast suppressor and a potential therapeutic strategy to confer skeletal protection and ameliorate bone metastasis of cancers.


Assuntos
Neoplasias Ósseas/prevenção & controle , Neoplasias Ósseas/secundário , Diferenciação Celular/genética , MicroRNAs/genética , Osteoclastos/patologia , Osteoporose/prevenção & controle , Proteínas Repressoras/deficiência , Animais , Sequência de Bases , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Deleção de Genes , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Transgênicos , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Transplante de Neoplasias , Tamanho do Órgão/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoporose/genética , Osteoporose/patologia , Ovariectomia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Neoplasias Cutâneas/patologia , Transgenes , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Metastasis Rev ; 37(1): 107-124, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29243000

RESUMO

RNA interference (RNAi) is considered a highly specific approach for gene silencing and holds tremendous potential for treatment of various pathologic conditions such as cardiovascular diseases, viral infections, and cancer. Although gene silencing approaches such as RNAi are widely used in preclinical models, the clinical application of RNAi is challenging primarily because of the difficulty in achieving successful systemic delivery. Effective delivery systems are essential to enable the full therapeutic potential of RNAi. An ideal nanocarrier not only addresses the challenges of delivering naked siRNA/miRNA, including its chemically unstable features, extracellular and intracellular barriers, and innate immune stimulation, but also offers "smart" targeted delivery. Over the past decade, great efforts have been undertaken to develop RNAi delivery systems that overcome these obstacles. This review presents an update on current progress in the therapeutic application of RNAi with a focus on cancer therapy and strategies for optimizing delivery systems, such as lipid-based nanoparticles.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Neoplasias/genética , Neoplasias/terapia , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Terapia Baseada em Transplante de Células e Tecidos , Resistencia a Medicamentos Antineoplásicos/genética , Genes MDR , Humanos , Terapia de Alvo Molecular , Nanopartículas , Neoplasias/imunologia , Células-Tronco/metabolismo
10.
Cancer ; 125(14): 2409-2422, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31012964

RESUMO

BACKGROUND: Over 96% of high-grade ovarian carcinomas and 50% of all cancers are characterized by alterations in the p53 gene. Therapeutic strategies to restore and/or reactivate the p53 pathway have been challenging. By contrast, p63, which shares many of the downstream targets and functions of p53, is rarely mutated in cancer. METHODS: A novel strategy is presented for circumventing alterations in p53 by inducing the tumor-suppressor isoform TAp63 (transactivation domain of tumor protein p63) through its direct downstream target, microRNA-130b (miR-130b), which is epigenetically silenced and/or downregulated in chemoresistant ovarian cancer. RESULTS: Treatment with miR-130b resulted in: 1) decreased migration/invasion in HEYA8 cells (p53 wild-type) and disruption of multicellular spheroids in OVCAR8 cells (p53-mutant) in vitro, 2) sensitization of HEYA8 and OVCAR8 cells to cisplatin (CDDP) in vitro and in vivo, and 3) transcriptional activation of TAp63 and the B-cell lymphoma (Bcl)-inhibitor B-cell lymphoma 2-like protein 11 (BIM). Overexpression of TAp63 was sufficient to decrease cell viability, suggesting that it is a critical downstream effector of miR-130b. In vivo, combined miR-130b plus CDDP exhibited greater therapeutic efficacy than miR-130b or CDDP alone. Mice that carried OVCAR8 xenograft tumors and were injected with miR-130b in 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) liposomes had a significant decrease in tumor burden at rates similar to those observed in CDDP-treated mice, and 20% of DOPC-miR-130b plus CDDP-treated mice were living tumor free. Systemic injections of scL-miR-130b plus CDDP in a clinically tested, tumor-targeted nanocomplex (scL) improved survival in 60% and complete remissions in 40% of mice that carried HEYA8 xenografts. CONCLUSIONS: The miR-130b/TAp63 axis is proposed as a new druggable pathway that has the potential to uncover broad-spectrum therapeutic options for the majority of p53-altered cancers.


Assuntos
MicroRNAs/uso terapêutico , Mutação de Sentido Incorreto , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Lipossomos , Camundongos , Camundongos Nus , MicroRNAs/administração & dosagem , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/prevenção & controle , Isoformas de Proteínas/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transfecção , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Cell Neurosci ; 86: 65-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29180229

RESUMO

Doxorubicin, a commonly used anti-neoplastic agent, causes severe neurotoxicity. Doxorubicin promotes thinning of the brain cortex and accelerates brain aging, leading to cognitive impairment. Oxidative stress induced by doxorubicin contributes to cellular damage. In addition to mitochondria, peroxisomes also generate reactive oxygen species (ROS) and promote cell senescence. Here, we investigated if doxorubicin affects peroxisomal homeostasis in neurons. We demonstrate that the number of peroxisomes is increased in doxorubicin-treated neurons and in the brains of mice which underwent doxorubicin-based chemotherapy. Pexophagy, the specific autophagy of peroxisomes, is downregulated in neurons, and peroxisomes produce more ROS. 2-hydroxypropyl-ß-cyclodextrin (HPßCD), an activator of the transcription factor TFEB, which regulates expression of genes involved in autophagy and lysosome function, mitigates damage of pexophagy and decreases ROS production induced by doxorubicin. We conclude that peroxisome-associated oxidative stress induced by doxorubicin may contribute to neurotoxicity, cognitive dysfunction, and accelerated brain aging in cancer patients and survivors. Peroxisomes might be a valuable new target for mitigating neuronal damage caused by chemotherapy drugs and for slowing down brain aging in general.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Lobo Frontal/ultraestrutura , Camundongos , Neurônios/metabolismo , Neurônios/ultraestrutura , Estresse Oxidativo/fisiologia , Peroxissomos/metabolismo , Peroxissomos/ultraestrutura , Ratos , Espécies Reativas de Oxigênio/metabolismo
12.
Hepatology ; 63(1): 159-72, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26389641

RESUMO

UNLABELLED: Metabolic activation is a common feature of many cancer cells and is frequently associated with the clinical outcomes of various cancers, including hepatocellular carcinoma. Thus, aberrantly activated metabolic pathways in cancer cells are attractive targets for cancer therapy. Yes-associated protein 1 (YAP1) and transcriptional coactivator with PDZ-binding motif (TAZ) are oncogenic downstream effectors of the Hippo tumor suppressor pathway, which is frequently inactivated in many cancers. Our study revealed that YAP1/TAZ regulates amino acid metabolism by up-regulating expression of the amino acid transporters solute carrier family 38 member 1 (SLC38A1) and solute carrier family 7 member 5 (SLC7A5). Subsequently, increased uptake of amino acids by the transporters (SLC38A1 and SLC7A5) activates mammalian target of rapamycin complex 1 (mTORC1), a master regulator of cell growth, and stimulates cell proliferation. We also show that high expression of SLC38A1 and SLC7A5 is significantly associated with shorter survival in hepatocellular carcinoma patients. Furthermore, inhibition of the transporters and mTORC1 significantly blocks YAP1/TAZ-mediated tumorigenesis in the liver. These findings elucidate regulatory networks connecting the Hippo pathway to mTORC1 through amino acid metabolism and the mechanism's potential clinical implications for treating hepatocellular carcinoma. CONCLUSION: YAP1 and TAZ regulate cancer metabolism and mTORC1 through regulation of amino acid transportation, and two amino acid transporters, SLC38A1 and SLC7A5, might be important therapeutic targets.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Sistemas de Transporte de Aminoácidos/fisiologia , Carcinoma Hepatocelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neoplasias Hepáticas/metabolismo , Complexos Multiproteicos/fisiologia , Fosfoproteínas/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinoma Hepatocelular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Fosfoproteínas/genética , Estrutura Terciária de Proteína , Transdução de Sinais , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
13.
Mol Syst Biol ; 10: 728, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24799285

RESUMO

Glutamine can play a critical role in cellular growth in multiple cancers. Glutamine-addicted cancer cells are dependent on glutamine for viability, and their metabolism is reprogrammed for glutamine utilization through the tricarboxylic acid (TCA) cycle. Here, we have uncovered a missing link between cancer invasiveness and glutamine dependence. Using isotope tracer and bioenergetic analysis, we found that low-invasive ovarian cancer (OVCA) cells are glutamine independent, whereas high-invasive OVCA cells are markedly glutamine dependent. Consistent with our findings, OVCA patients' microarray data suggest that glutaminolysis correlates with poor survival. Notably, the ratio of gene expression associated with glutamine anabolism versus catabolism has emerged as a novel biomarker for patient prognosis. Significantly, we found that glutamine regulates the activation of STAT3, a mediator of signaling pathways which regulates cancer hallmarks in invasive OVCA cells. Our findings suggest that a combined approach of targeting high-invasive OVCA cells by blocking glutamine's entry into the TCA cycle, along with targeting low-invasive OVCA cells by inhibiting glutamine synthesis and STAT3 may lead to potential therapeutic approaches for treating OVCAs.


Assuntos
Proliferação de Células , Metabolismo Energético/genética , Glutamina/metabolismo , Neoplasias Ovarianas/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico , Transdução de Sinais/genética
14.
Nat Med ; 12(8): 939-44, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16862152

RESUMO

Stress can alter immunological, neurochemical and endocrinological functions, but its role in cancer progression is not well understood. Here, we show that chronic behavioral stress results in higher levels of tissue catecholamines, greater tumor burden and more invasive growth of ovarian carcinoma cells in an orthotopic mouse model. These effects are mediated primarily through activation of the tumor cell cyclic AMP (cAMP)-protein kinase A (PKA) signaling pathway by the beta(2) adrenergic receptor (encoded by ADRB2). Tumors in stressed animals showed markedly increased vascularization and enhanced expression of VEGF, MMP2 and MMP9, and we found that angiogenic processes mediated the effects of stress on tumor growth in vivo. These data identify beta-adrenergic activation of the cAMP-PKA signaling pathway as a major mechanism by which behavioral stress can enhance tumor angiogenesis in vivo and thereby promote malignant cell growth. These data also suggest that blocking ADRB-mediated angiogenesis could have therapeutic implications for the management of ovarian cancer.


Assuntos
Carcinoma/irrigação sanguínea , Carcinoma/fisiopatologia , Neovascularização Patológica/fisiopatologia , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/fisiopatologia , Estresse Psicológico , Animais , Carcinoma/diagnóstico por imagem , Carcinoma/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Combinação de Medicamentos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Isoproterenol/agonistas , Camundongos , Camundongos Nus , Transplante de Neoplasias , Tamanho do Órgão , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Piridinas/farmacologia , Radiografia , Distribuição Aleatória , Terbutalina/agonistas , Transplante Heterólogo , Carga Tumoral , Fator A de Crescimento do Endotélio Vascular/fisiologia
15.
iScience ; 26(2): 106020, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36824283

RESUMO

Despite modest clinical improvement with anti-vascular endothelial growth factor antibody (AVA) therapy in ovarian cancer, adaptive resistance is ubiquitous and additional options are limited. A dependence on glutamine metabolism, via the enzyme glutaminase (GLS), is a known mechanism of adaptive resistance and we aimed to investigate the utility of a GLS inhibitor (GLSi). Our in vitro findings demonstrated increased glutamine abundance and a significant cytotoxic effect in AVA-resistant tumors when GLSi was administered in combination with bevacizumab. In vivo, GLSi led to a reduction in tumor growth as monotherapy and when combined with AVA. Furthermore, GLSi initiated after the emergence of resistance to AVA therapy resulted in a decreased metabolic conversion of pyruvate to lactate as assessed by hyperpolarized magnetic resonance spectroscopy and demonstrated robust antitumor effects with a survival advantage. Given the increasing population of patients receiving AVA therapy, these findings justify further development of GLSi in AVA resistance.

16.
J Control Release ; 357: 472-483, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031740

RESUMO

Plant-derived vesicles (PDVs) are attractive for therapeutic applications, including as potential nanocarriers. However, a concern with oral delivery of PDVs is whether they would remain intact in the gastrointestinal tract. We found that 82% of cabbage PDVs were destroyed under conditions mimicking the upper digestive tract. To overcome this limitation, we developed a delivery method whereby lyophilized Eudragit S100-coated cabbage PDVs were packaged into a capsule (Cap-cPDVs). Lyophilization and suspension of PDVs did not have an appreciable impact on PDV structure, number, or therapeutic effect. Additionally, packaging the lyophilized Eudragit S100-coated PDVs into capsules allowed them to pass through the upper gastrointestinal tract for delivery into the colon better than did suspension of PDVs in phosphate-buffered saline. Cap-cPDVs showed robust therapeutic effect in a dextran sulfate sodium-induced colitis mouse model. These findings could have broad implications for the use of PDVs as orally delivered nanocarriers of natural therapeutic plant compounds or other therapeutics.


Assuntos
Colite , Camundongos , Animais , Concentração de Íons de Hidrogênio , Colite/induzido quimicamente , Colite/tratamento farmacológico , Ácidos Polimetacrílicos/química , Administração Oral , Sistemas de Liberação de Medicamentos
17.
Nat Commun ; 14(1): 2407, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100807

RESUMO

Antiangiogenic treatment targeting the vascular endothelial growth factor (VEGF) pathway is a powerful tool to combat tumor growth and progression; however, drug resistance frequently emerges. We identify CD5L (CD5 antigen-like precursor) as an important gene upregulated in response to antiangiogenic therapy leading to the emergence of adaptive resistance. By using both an RNA-aptamer and a monoclonal antibody targeting CD5L, we are able to abate the pro-angiogenic effects of CD5L overexpression in both in vitro and in vivo settings. In addition, we find that increased expression of vascular CD5L in cancer patients is associated with bevacizumab resistance and worse overall survival. These findings implicate CD5L as an important factor in adaptive resistance to antiangiogenic therapy and suggest that modalities to target CD5L have potentially important clinical utility.


Assuntos
Neoplasias , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Anticorpos Monoclonais/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Proteínas Reguladoras de Apoptose , Receptores Depuradores
18.
J Biol Chem ; 286(37): 32483-90, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21775437

RESUMO

This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison with static 1 × g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a high aspect ratio vessel (bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNAs was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22, miR-141, miR-618, and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using quantitative RT-PCR. Expression of several transcription factors including EGR2, ETS1, and c-REL was altered in simulated microgravity conditions. Taken together, the results reported here indicate that simulated microgravity alters the expression of miRNAs and genes in TK6 cells. To our knowledge, this study is the first to report the effects of simulated microgravity on the expression of miRNA and related genes.


Assuntos
Regulação da Expressão Gênica , Linfócitos/metabolismo , MicroRNAs/biossíntese , Ausência de Peso , Linhagem Celular , Perfilação da Expressão Gênica , Linfócitos/citologia , Análise de Sequência com Séries de Oligonucleotídeos
19.
J Cancer Res Clin Oncol ; 148(4): 803-821, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35094142

RESUMO

PURPOSE: Tumor-associated macrophages (TAMs) are known to contribute to adaptive resistance to anti-vascular endothelial growth factor (VEGF) antibody (AVA) therapy in ovarian cancer. BET (bromodomain and extra-terminal domain) inhibitors (BETi) may have unique roles in targeting TAMs. Our objective was to examine the effects of BETi on TAMs, especially in the context of enhancing the efficacy of AVA therapy. METHODS: We conducted a series of in vitro (MTT assay, apoptosis, flow cytometry, and RNA sequencing) and in vivo (xenograft ovarian cancer model) experiments to determine the biological effects of BETi combined with AVA in ovarian cancer. For statistical analysis, a two-tailed Student's t test (equal variance) or ANOVA was used for multiple groups' comparison, and p < 0.05 was considered significant. RESULTS: BETi resulted in a dose-dependent decrease in cell viability and induced apoptosis (p < 0.01) in ovarian cancer cells (SKOV3ip1, OVCAR5, and OVCAR8). Treatment with BETi significantly increased apoptosis in THP-1 monocytes and macrophages (PMA-differentiated THP-1; p < 0.01). Furthermore, BETi selectively induced greater apoptosis in M2-like macrophages (PMA and IL-4, IL-13-differentiated THP-1) (31.3%-36.1%) than in M1-like macrophages (PMA and LPS-differentiated THP-1) (12.4%-18.5%) (p < 0.01). Flow cytometry revealed that the percentage of M1-like macrophages (CD68+/CD80+) was significantly increased after treatment with low-dose BETi (ABBV-075 0.1 µM; p < 0.05), whereas the percentage of CD68+/CCR2+ macrophages was significantly decreased (p < 0.001); these findings suggest that BETi may selectively inhibit the survival of CCR2+ macrophages and re-polarize the macrophages into an M1-like phenotype. RNA-seq analysis revealed that BETi selectively targeted macrophage infiltration-related cytokines/chemokines in ovarian cancer (adjusted p < 0.05 and Log2 fold change ≥ 1.5). Finally, using in vivo ovarian cancer models, compared with control or monotherapy, the combination of BETi (ABBV-075) and bevacizumab resulted in greater inhibition of tumor growth and macrophage infiltration (p < 0.05) and longer survival of tumor-bearing mice (p < 0.001). CONCLUSIONS: Our findings indicate a previously unrecognized role for BETi in selectively targeting CCR2+ TAMs and enhancing the efficacy of AVA therapy in ovarian cancer.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Animais , Antineoplásicos/farmacologia , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Humanos , Macrófagos , Camundongos , Neoplasias Ovarianas/patologia , Receptores CCR2/metabolismo
20.
Cancers (Basel) ; 14(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077735

RESUMO

Despite having similar histologic features, patients with high-grade serous ovarian carcinoma (HGSC) often experience highly variable outcomes. The underlying determinants for long-term survival (LTS, ≥10 years) versus short-term survival (STS, <3 years) are largely unknown. The present study sought to identify molecular predictors of LTS for women with HGSC. A cohort of 24 frozen HGSC samples was collected (12 LTS and 12 STS) and analyzed at DNA, RNA, and protein levels. OVCAR5 and OVCAR8 cell lines were used for in vitro validation studies. For in vivo studies, we injected OVCAR8 cells into the peritoneal cavity of female athymic nude mice. From RNAseq analysis, 11 genes were found to be differentially expressed between the STS and LTS groups (fold change > 2; false discovery rate < 0.01). In the subsequent validation cohort, transmembrane protein 62 (TMEM62) was found to be related to LTS. CIBERSORT analysis showed that T cells (follicular helper) were found at higher levels in tumors from LTS than STS groups. In vitro data using OVCAR5 and OVCAR8 cells showed decreased proliferation with TMEM62 overexpression and positive correlation with a longevity-regulating pathway (KEGG HSA04213) at the RNA level. In vivo analysis using the OVCAR8-TMEM62-TetON model showed decreased tumor burden in mice with high- vs. low-expressing TMEM62 tumors. Our results demonstrate that restoring TMEM62 may be a novel approach for treatment of HGSC. These findings may have implications for biomarker and intervention strategies to help improve patient outcomes

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA