Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958037

RESUMO

Nanoscale zinc-oxide doped with aluminum ZnO:Al is studied by different techniques targeting surface changes induced by the conditions at which ZnO:Al is used as support material in the catalysis of methanol. While it is well established that a variety of 1H and 27Al resonances can be found by solid-state NMR for this material, it was not clear yet which signals are related to species located close to the surface of the material and which to species located in the bulk. To this end, a method is suggested that makes use of a paramagnetically impregnated material to suppress NMR signals close to the particle surface in the blind sphere around the paramagnetic metal atoms. It is shown that it is important to use conditions that guarantee a stable reference system relative to which it can be established whether the coating procedure is conserving the original structure or not. This method, called paramagnetically assisted surface peak assignment, helped to assign the 1H and 27Al NMR peaks to the bulk and the surface layer defined by the blind sphere of the paramagnetic atoms. The assignment results are further corroborated by the results from heteronuclear 27Al{1H} dipolar dephasing experiments, which indicate that the hydrogen atoms are preferentially located in the surface layer and not in the particle core.

2.
Small ; 19(18): e2207492, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36782364

RESUMO

The material design of functional "aero"-networks offers a facile approach to optical, catalytical, or and electrochemical applications based on multiscale morphologies, high large reactive area, and prominent material diversity. Here in this paper, the synthesis and structural characterization of a hybrid ß-Ga2 O3 /ZnGa2 O4 nanocomposite aero-network are presented. The nanocomposite networks are studied on multiscale with respect to their micro- and nanostructure by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and are characterized for their photoluminescent response to UV light excitation and their electrochemical performance with Li-ion conversion reaction. The structural investigations reveal the simultaneous transformation of the precursor aero-GaN(ZnO) network into hollow architectures composed of ß-Ga2 O3 and ZnGa2 O4 nanocrystals with a phase ratio of ≈1:2. The photoluminescence of hybrid aero-ß-Ga2 O3 /ZnGa2 O4 nanocomposite networks demonstrates narrow band (λem  = 504 nm) green light emission of ZnGa2 O4 under UV light excitation (λex  = 300 nm). The evaluation of the metal-oxide network performance for electrochemical application for Li-ion batteries shows high initial capacities of ≈714 mAh g-1 at 100 mA g-1 paired with exceptional rate performance even at high current densities of 4 A g-1 with 347 mAh g-1 . This study provides is an exciting showcase example of novel networked materials and demonstrates the opportunities of tailored micro-/nanostructures for diverse applications a diversity of possible applications.

3.
Inorg Chem ; 61(42): 16841-16855, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36218356

RESUMO

The reaction of Co(NCS)2 with 3-bromopyridine leads to the formation of discrete complexes [Co(NCS)2(3-bromopyridine)4] (1), [Co(NCS)2(3-bromopyridine)2(H2O)2] (2), and [Co(NCS)2(3-bromopyridine)2(MeOH)2] (3) depending on the solvent. Thermogravimetric measurements on 2 and 3 show a transformation into [Co(NCS)2(3-bromopyridine)2]n (4), which upon further heating is converted to [{Co(NCS)2}2(3-bromopyridine)3]n (5), whereas 1 transforms directly into 5 upon heating. Compound 5 can also be obtained from solution, which is not possible for 4. In 4 and 5, the cobalt(II) cations are linked by pairs of µ-1,3-bridging thiocyanate anions into chains. In compound 4, all cobalt(II) cations are octahedrally coordinated (OC-6), as is usually observed in such compounds, whereas in 5, a previously unkown alternating 5- and 6-fold coordination is observed, leading to vacant octahedral (vOC-5) and octahedral (OC-6) environments, respectively. In contrast to 4, the chains in 5 are very efficiently packed and linked by π···π stacking of the pyridine rings and interchain Co···Br interactions, which is the basis for the formation of this unusual chain. The spin chains in 4 demonstrate ferromagnetic intrachain exchange and much weaker interchain interactions, as is usually observed for such linear chain compounds. In contrast, compound 5 shows almost single-ion-like magnetic susceptibility, but the magnetic ordering temperature deduced from specific heat measurements is twice as high as that in 4, which might originate from π···π stacking and Co···Br interactions between neighboring chains. More importantly, unlike all linear Co(NCS)2 chain compounds, a dominant antiferromagnetic exchange is observed for 5, which is explained by density functional theory calculations predicting an alternating ferro- and aniferromagnetic exchange within the chains. Theoretical calculations on the two different cobalt(II) ions present in 5 predict an easy-axis anisotropy that is much stronger for the octahedral cobalt(II) ion than for the one with the vacant octahedral coordination, with the magnetic axes of the two ions being canted by an angle of 84°. This almost orthogonal orientation of the easy axis of magnetization for the two cobalt(II) ions is the rationale for the observed non-Ising behavior of 5.

4.
Inorg Chem ; 61(49): 19678-19694, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36441526

RESUMO

The phase width of the copper hydroxycarbonate malachite, Cu2CO3(OH)2, upon substitution with magnesium has been studied in detail. In extension of a previous study on amorphous precursors, the introduction of a hydrothermal aging step allowed the retrieval of crystalline hydroxycarbonate samples with up to 37 atom % Mg (metal content) that are suitable candidates as precursors to Cu/MgO catalysts for CO hydrogenation. Simultaneous refinements of X-ray powder diffraction and pair distribution function (PDF) data as well as complementary spectroscopic insight (X-ray absorption and infrared spectroscopy) revealed that samples with up to 18 atom % Mg are phase-pure magnesian malachites but the magnesium content can be increased beyond this threshold when mcguinnessite (CuMgCO3(OH)2) is accepted as a side phase. In a complementary study, a continuous increase of the magnesium fraction was found during aging and the corresponding structural evolution was studied by means of PDF. These findings add significant insight into the aging chemistry of crystalline Cu,Mg hydroxycarbonates. Furthermore, both phase-pure magnesian malachite and mcguinnessite-containing samples with up to 37 atom % Mg have been examined by thermogravimetry, X-ray powder diffraction, and N2 physisorption and were found to be promising candidates for use as precursors for the preparation of Cu/MgO catalysts.


Assuntos
Cobre , Compostos Organometálicos , Cobre/química , Magnésio/química , Difração de Raios X , Óxido de Magnésio , Espectrofotometria Infravermelho
5.
Inorg Chem ; 59(2): 1117-1124, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31887026

RESUMO

We present a systematic study on the magnetotransport properties of HfTe2 single crystals grown by different synthetic protocols. Both chemical vapor transport (CVT) as well as the self-flux method were applied. Depending on the synthetic procedure the crystal quality is reflected by the residual resistivity ratio (RRR). The best CVT grown crystal shows a RRR of 262, while the crystal with the highest quality obtained with the Te self-flux method exhibits a value of 404. The superiority of the self-flux method can be traced back to its ability to reduce the amount of Zr as main contaminant more effectively compared to chemical vapor transport. The large RRR value is reflected in the magnetoresistance (MR) effect which reaches more than 9400%, outperforming the data published for HfTe2. The benefit of the self-flux approach was tested for WTe2 and a RRR of 2525 was reached significantly surpassing the data reported in literature. Crystals of both high and low RRR were compared with respect to the magnetotransport properties, i.e., transverse magnetoresistance and the Hall effect. The major factor determining the maximum value of the MR is the carrier mobility which is severely affected by the preparation conditions, while the carrier balance remains virtually unaffected.

6.
Inorg Chem ; 59(12): 7966-7979, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32036663

RESUMO

Two polymorphic modifications (1-I and 1-II) of the new spin crossover (SCO) complex [Fe{H2B(pz)(pypz)}2] (pz = pyrazole, pypz = pyridylpyrazole; 1) were prepared and investigated by differential scanning calorimetry (DSC), magnetic measurements, Mößbauer, vibrational, and absorption spectroscopy as well as single-crystal and X-ray powder diffraction. DSC measurements reveal that upon heating the thermodynamically metastable form 1-II to ∼178 °C it transforms into 1-I in an exothermic reaction, which proves that these modifications are related by monotropism. Both forms show thermal SCO with T1/2 values of 390 K (1-II) and 270 K (1-I). An analysis of the crystal structures of 1-II and the corresponding Zn(II) (2) and Co(II) (3) complexes that are isotypic with 1-I reveals that form II consists of dimers coupled by strong intramolecular π···π interactions, which is not the case for 1-I. In agreement with these findings, investigations of thin films of 1, where significant π···π interactions should be absent, reveal SCO behavior similar to that of 1-I. These results underscore the importance of cooperativity for the spin-transition behavior of this class of complexes.

7.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 7): 771-776, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38974152

RESUMO

The title compound, [Ni(NCS)2(C6H7N)2] n , was prepared by the reaction of Ni(NCS)2 with 4-methyl-pyridine in water. Its asymmetric unit consists of two crystallographically independent NiII cations, of which one is located on a twofold rotational axis whereas the second occupies a center of inversion, two independent thio-cyanate anions and two independent 4-methyl-pyridine co-ligands in general positions. Each NiII cation is octa-hedrally coordinated by two 4-methyl-pyridine coligands as well as two N- and two S-bonded thio-cyanate anions. One of the cations shows an all-trans, the other a cis-cis-trans configuration. The metal centers are linked by pairs of µ-1,3-bridging thio-cyanate anions into [101] chains. X-ray powder diffraction shows that a pure crystalline phase has been obtained and thermogravimetry coupled to differential thermoanalysis reveals that the title compound loses half of the 4-methyl-pyridine coligands and transforms into Ni(NCS)2(C6H7N). Nearly pure samples of this compound can be obtained by thermal annealing and a Rietveld refinement demonstrated that it is isotypic to its recently reported Cd analog [Neumann et al., (2020 ▸). CrystEngComm. 22, 184-194] In its crystal structure, the metal cations are linked by one µ-1,3(N,S)- and one µ-1,3,3(N,S,S)-bridging thio-cyanate anion into single chains that condense via the µ-1,3,3(N,S,S)-bridging anionic ligands into double chains.

8.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 5): 482-487, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37151823

RESUMO

The reaction of MnCl2·2H2O with KSeCN and pyridine in water leads to the formation of the title complex, [Mn(NCSe)2(C5H5N)4], which is isotypic to its Fe, Co, Ni, Zn and Cd analogues. In its crystal structure, discrete complexes are observed that are located on centres of inversion. The Mn cations are octa-hedrally coordinated by four pyridine coligands and two seleno-cyanate anions that coordinate via the N atom to the metal centres to generate trans-MnN(s)2N(p)4 octa-hedra (s = seleno-cyanate and p = pyridine). In the extended structure, weak C-H⋯Se contacts are observed. Powder X-ray diffraction (PXRD) investigations prove that a pure sample was obtained and in the IR and Raman spectra, the C-N stretching vibrations are observed at 2058 and 2060 cm-1, respectively, in agreement with the terminal coordination of the seleno-cyanate anions. Thermogravimetric investigations reveal that the pyridine coligands are removed in two separate steps. In the first mass loss, a compound with the composition Mn(NCSe)2(C5H5N)2 is formed, whereas in the second mass loss, the remaining pyridine ligands are removed, which is superimposed with the decomposition of Mn(NCSe)2 formed after ligand removal. In the inter-mediate compound Mn(NCSe)2(C5H5N)2, the CN stretching vibration is observed at 2090 cm-1 in the Raman and at 2099 cm-1 in the IR spectra, indicating that the Mn cations are linked by µ-1,3-bridging anionic ligands. PXRD measurements show that a compound has formed that is of poor crystallinity. A comparison of the powder pattern with that calculated for the previously reported Cd(NCSe)2(C5H5N)2 indicates that these compounds are isotypic, which was proven by a Pawley fit.

9.
Dalton Trans ; 52(16): 5321-5335, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36988475

RESUMO

The preparation of Al-doped ZnO via thermal decomposition of crystalline precursors, with a particular emphasis on kinetic effects on the solubility limits, was studied. The promoting effect of Al3+ on the catalyst system is discussed for methanol synthesis where ZnO:Al is employed as a support material for copper nanoparticles. The synthesis of the Al-doped zinc oxides in this study was inspired by the industrial synthesis of the methanol synthesis catalyst via a co-precipitated crystalline precursor, here: hydrozincite Zn5(OH)6(CO3)2. To determine the aluminium speciation and the solubility limit of the aluminium cation on zinc positions, a series of zinc oxides with varying aluminium contents was synthesized by calcination of the precursors. Short precipitate ageing time, low ageing temperature and aluminium contents below 3 mol% metal were advantageous to suppress crystalline side-phases in the precursor, which caused an aluminium segregation and non-uniform aluminium distribution in the solid. Even if zinc oxide was the only crystalline phase, TEM revealed such segregation in samples calcined at 320 °C. Only at very low aluminium contents, the dopant was found preferably on the zinc sites of the zinc oxide structure based on the signal dominating the 27Al NMR spectra. The solubility limit regarding this species was determined to be approximately xAl = 0.013 or 1.3% of all metal cations. Annealing experiments showed that aluminium was kinetically trapped on the site and segregated into ZnAl2O4 upon further heating. This shows that lower calcination temperatures such as applied in catalyst synthesis conserve a higher aluminium doping concentration on that specific site than is expected thermodynamically.

10.
Chem Sci ; 13(21): 6397-6412, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35733899

RESUMO

Molecular metal oxides often adopt common structural frameworks (i.e. archetypes), many of them boasting impressive structural robustness and stability. However, the ability to adapt and to undergo transformations between different structural archetypes is a desirable material design feature offering applicability in different environments. Using systems thinking approach that integrates synthetic, analytical and computational techniques, we explore the transformations governing the chemistry of polyoxovanadates (POVs) constructed of arsenate and vanadate building units. The water-soluble salt of the low nuclearity polyanion [V6As8O26]4- can be effectively used for the synthesis of the larger spherical (i.e. kegginoidal) mixed-valent [V12As8O40]4- precipitate, while the novel [V10As12O40]8- POVs having tubular cyclic structures are another, well soluble product. Surprisingly, in contrast to the common observation that high-nuclearity polyoxometalate (POM) clusters are fragmented to form smaller moieties in solution, the low nuclearity [V6As8O26]4- anion is in situ transformed into the higher nuclearity cluster anions. The obtained products support a conceptually new model that is outlined in this article and that describes a continuous evolution between spherical and cyclic POV assemblies. This new model represents a milestone on the way to rational and designable POV self-assemblies.

11.
Dalton Trans ; 48(4): 1184-1201, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30539178

RESUMO

Herein we present an in-depth study of precursor derived tungsten sulfides, with a focus on their micro- and local structures. We prepared a new tetrathiotungstate based precursor (N2H5)2WS4 and unveiled the details of its unique decomposition mechanism by a combination of in situ and ex situ analytical techniques. Upon heating the precursor, a new compound with composition (NH4)(N2H5)WS4 is formed by the decomposition of one hydrazinium molecule. Above ∼190 °C, (NH4)2WS4 crystallized as the second crystalline intermediate followed by successive decomposition to WS2via amorphous WS3 upon increasing the temperature. Using X-ray diffraction, total scattering data and pair distribution function (PDF) analyses we are able to develop a detailed picture of the microstructure of nanosized WS2 samples obtained by the thermal decomposition of the precursor. The microstructure is described by global optimization of the stacking pattern of WS2 slabs in a supercell containing a large number of layers. The results clearly demonstrate that both stacking faults and random shifts of the WS2 layers contribute to the disorder in the material. This is significantly distinct to bulk materials, where solely stacking faults with no turbostratic disorder components were found.

12.
Dalton Trans ; 48(44): 16737-16743, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31670727

RESUMO

A metallocene based linker 1,1'-ferrocenedicarboxylic acid (H2FcDC) was used to synthesise the first permanently porous ferrocenedicarboxylate, exhibiting a MIL-53 architecture. This compound Al-MIL-53-FcDC [Al(OH)(FcDC)] is obtained in glass vials under mild synthesis conditions at ≤100 °C and after a short reaction time of 90 min. The crystal structure was determined from powder X-ray diffraction data and the compound shows porosity towards N2 and H2O, exhibiting a BET surface area of 340 m2 g-1. Furthermore, the MOF was characterised via EPR and Mössbauer spectroscopy. The Mössbauer spectrum of Al-MIL-53-FcDC shows a characteristic doublet with an isomeric shift of 0.34 mm s-1 and a quadrupole splitting of 2.39 mm s-1, proving the persistence of the ferrocene moiety. A negligibly small amount of impurities of ferrocenium ions could be detected by EPR spectroscopy as a complementary technique. Cyclic voltammetric experiments demonstrated the accessible redox activity of the linker molecule FcDC2- in Al-MIL-53-FcDC. A reversible oxidation and reduction signal (0.75 V and 0.64 V, respectively, vs. Ag) of FcDC2- was observed and maintained during forty CV cycles, while the crystallinity of the MOF remained unchanged after the experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA