Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Biol Chem ; 292(28): 11927-11936, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28533432

RESUMO

Proper chromatin regulation is central to genome function and maintenance. The group III chromodomain-helicase-DNA-binding (CHD) family of ATP-dependent chromatin remodeling enzymes, comprising CHD6, CHD7, CHD8, and CHD9, has well-documented roles in transcription regulation, impacting both organism development and disease etiology. These four enzymes are similar in their constituent domains, but they fill surprisingly non-redundant roles in the cell, with deficiencies in individual enzymes leading to dissimilar disease states such as CHARGE syndrome or autism spectrum disorders. The mechanisms explaining their divergent, non-overlapping functions are unclear. In this study, we performed an in-depth biochemical analysis of purified CHD6, CHD7, and CHD8 and discovered distinct differences in chromatin remodeling specificities and activities among them. We report that CHD6 and CHD7 both bind with high affinity to short linker DNA, whereas CHD8 requires longer DNA for binding. As a result, CHD8 slides nucleosomes into positions with more flanking linker DNA than CHD7. Moreover, we found that, although CHD7 and CHD8 slide nucleosomes, CHD6 disrupts nucleosomes in a distinct non-sliding manner. The different activities of these enzymes likely lead to differences in chromatin structure and, thereby, transcriptional control, at the enhancer and promoter loci where these enzymes bind. Overall, our work provides a mechanistic basis for both the non-redundant roles and the diverse mutant disease states of these enzymes in vivo.


Assuntos
Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nucleossomos/enzimologia , Fatores de Transcrição/metabolismo , Animais , Transporte Biológico , DNA/química , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/isolamento & purificação , DNA Recombinante/química , DNA Recombinante/metabolismo , DNA Viral/química , DNA Viral/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Células HeLa , Humanos , Hidrólise , Cinética , Peso Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/isolamento & purificação , Nucleossomos/metabolismo , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação
2.
Proc Natl Acad Sci U S A ; 111(50): 17827-32, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25453095

RESUMO

Heterochromatin is a specialized chromatin structure that is central to eukaryotic transcriptional regulation and genome stability. Despite its globally repressive role, heterochromatin must also be dynamic, allowing for its repair and replication. In budding yeast, heterochromatin formation requires silent information regulators (Sirs) Sir2p, Sir3p, and Sir4p, and these Sir proteins create specialized chromatin structures at telomeres and silent mating-type loci. Previously, we found that the SWI/SNF chromatin remodeling enzyme can catalyze the ATP-dependent eviction of Sir3p from recombinant nucleosomal arrays, and this activity enhances early steps of recombinational repair in vitro. Here, we show that the ATPase subunit of SWI/SNF, Swi2p/Snf2p, interacts with the heterochromatin structural protein Sir3p. Two interaction surfaces are defined, including an interaction between the ATPase domain of Swi2p and the nucleosome binding, Bromo-Adjacent-Homology domain of Sir3p. A SWI/SNF complex harboring a Swi2p subunit that lacks this Sir3p interaction surface is unable to evict Sir3p from nucleosomes, even though its ATPase and remodeling activities are intact. In addition, we find that the interaction between Swi2p and Sir3p is key for SWI/SNF to promote resistance to replication stress in vivo and for establishment of heterochromatin at telomeres.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Heterocromatina/metabolismo , Histonas/metabolismo , Modelos Moleculares , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Oligonucleotídeos/genética , Reação em Cadeia da Polimerase , Corantes de Rosanilina , Xenopus laevis
3.
Front Immunol ; 13: 1016179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569945

RESUMO

The optimal use of many biotherapeutics is restricted by Anti-drug antibodies (ADAs) and hypersensitivity responses which can affect potency and ability to administer a treatment. Here we demonstrate that Re-surfacing can be utilized as a generalizable approach to engineer proteins with extensive surface residue modifications in order to avoid binding by pre-existing ADAs. This technique was applied to E. coli Asparaginase (ASN) to produce functional mutants with up to 58 substitutions resulting in direct modification of 35% of surface residues. Re-surfaced ASNs exhibited significantly reduced binding to murine, rabbit and human polyclonal ADAs, with a negative correlation observed between binding and mutational distance from the native protein. Reductions in ADA binding correlated with diminished hypersensitivity responses in an in vivo mouse model. By using computational design approaches to traverse extended distances in mutational space while maintaining function, protein Re-surfacing may provide a means to generate novel or second line therapies for life-saving drugs with limited therapeutic alternatives.


Assuntos
Asparaginase , Escherichia coli , Humanos , Animais , Camundongos , Coelhos , Asparaginase/genética , Asparaginase/uso terapêutico , Escherichia coli/genética , Anticorpos , Proteínas de Membrana
4.
Nat Commun ; 5: 4751, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25163529

RESUMO

Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed. However, surprisingly little is known about the structure of heterochromatin or its dynamics in solution. In budding yeast, formation of heterochromatin at telomeres and the homothallic silent mating type loci require the Sir3 protein. Here, we use a combination of sedimentation velocity, atomic force microscopy and nucleosomal array capture to characterize the stoichiometry and conformation of Sir3 nucleosomal arrays. The results indicate that Sir3 interacts with nucleosomal arrays with a stoichiometry of two Sir3 monomers per nucleosome. We also find that Sir3 fibres are less compact than canonical magnesium-induced 30 nm fibres. We suggest that heterochromatin proteins promote silencing by 'coating' nucleosomal arrays, stabilizing interactions between nucleosomal histones and DNA.


Assuntos
Heterocromatina/química , Nucleossomos/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Algoritmos , Heterocromatina/metabolismo , Microscopia de Força Atômica , Método de Monte Carlo , Nucleossomos/química , Nucleossomos/genética , Multimerização Proteica , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Ultracentrifugação
5.
Nat Struct Mol Biol ; 20(1): 5-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23288358

RESUMO

Chromatin-remodeling enzymes use the energy from ATP hydrolysis to mobilize, disrupt or change the histone composition of nucleosomes, facilitating nearly every nuclear event. Two recent studies indicate that remodeling enzymes harness the power of an ancient constitutively active DNA translocase and that different remodeling enzymes may use specialized coupling domains that communicate the presence of nucleosomal epitopes to regulate translocase and remodeling activity.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Nucleossomos/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ciclo Celular , Cromatina/metabolismo , DNA/metabolismo , DNA Helicases/genética , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/genética , Regiões Promotoras Genéticas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA