Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580500

RESUMO

In industry, silica nanoparticles (NPs) are obtained by the fuming and the precipitation method. Fumed silica NPs are commonly used in the preparation of nanocomposites because they have an extremely low bulk density (160-190 kg/m3), large surface area (50-600 m2/g), and nonporous surface, which promotes strong physical contact between the NPs and the organic phase. Fumed silica has fewer silanol groups (Si-OH) on its surface than the silica prepared by the Stöber method. However, the number of -OH groups on the fumed silica surface can be increased by pretreating them with sodium hydroxide (NaOH) before further surface modification. In this study, the effectiveness of the NaOH pretreatment was evaluated on commercial fumed silica NPs with a surface area of 200 m2/g. The number of surface -OH groups was estimated by potentiometric titration. The pretreated fumed NPs, and the precipitated NPs (prepared by the Stöber method) were modified with 3-aminopropyltriethoxysilane (APTES) to obtain A200S and nSiO2-APTES, respectively. The NPs were characterized using electron dispersive scanning (EDS), scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), BET (Brunauer-Emmett-Teller) analysis, and ζ-potential. XRD confirmed the presence of the organo-functional group on the surface of both NPs. After the amino-functionalization, the ζ-potential values of the nSiO2 and A200 changed from -35.5 mV and -14.4 mV to +26.2 mV and +11.76 mV, respectively. Consequently, we have successfully synthesized functionalized NPs with interesting, specific surface area and porosity (pore volume and size), which can be attractive materials for chemical and energy industries.


Assuntos
Aminas/química , Nanopartículas/química , Nanoestruturas/química , Dióxido de Silício/química , Difusão Dinâmica da Luz , Nanopartículas/ultraestrutura , Nanoestruturas/ultraestrutura , Tamanho da Partícula , Propilaminas/química , Silanos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
2.
ACS Omega ; 9(37): 38532-38547, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39310147

RESUMO

The addition of nanoparticles has been presented as an alternative approach to counteract the degradation of polymeric solutions for enhanced oil recovery. In this context, a nanohybrid (NH34) of partially hydrolyzed polyacrylamide (MW ∼12 MDa) and nanosilica modified with 2% 3-aminopropyltriethoxysilane (nSiO2-APTES) was synthesized and evaluated. NH34 was characterized by using dynamic light scattering, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Fluid-fluid tests assessed its viscosifying power, mechanical stability, filterability, and emulsion behavior. Rock-fluid tests were carried out to determine the nanohybrid's adsorption in porous media, the inaccessible pore volume (IPV), and the resistance (RF) and residual resistance factors (RRF). These tests were conducted under the conditions of a Colombian field. NH34 results were compared with four (4) commercial polymers (P34, P88, P51, and PA2). The viscosifying power of NH34 was observed to be similar to that of the four commercial polymers at a lower concentration, but it exhibits more resistance to mechanical and chemical degradation. The evaluation of the emulsion behavior showed that the nanohybrid neither changed the dehydration process nor altered the crude oil viscosity, favoring its extraction at the wellhead. However, the water clarification treatment must be adjusted because the oil and grease contents and turbidity increase with the residual concentration of NH34. Incremental oil recovery factors obtained by numerical simulation (compared to waterflooding) were P51 (5.5%) > P34 (4.9%) > P88 (4.8%) > NH34 (2.6%) > PA2 (0.9%). The polymers P51, P34, and P88 had a better recovery factor than NH34 and PA2 due to their lower values of residual adsorption and IPV. Few studies have been reported on polymer nanohybrids' emulsion and flow behavior. Therefore, further research is needed to enhance our understanding of the fundamental enhanced oil recovery mechanisms associated with polymer nanohybrids.

3.
ACS Omega ; 9(7): 7923-7936, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405542

RESUMO

Nanoparticles (NPs) have been proposed as additives to improve the rheological properties of polymer solutions and reduce mechanical degradation. This study presents the results of the retention experiment and the numerical simulation of the displacement efficiency of a SiO2/hydrolyzed polyacrylamide (HPAM) nanohybrid (CSNH-AC). The CSNH-AC was obtained from SiO2 NPs (synthesized by the Stöber method) chemically modified with HPAM chains. Attenuated total reflection-Fourier transform infrared spectroscopy, field emission gun-scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis were used to characterize the nanohybrid. The injectivity and dynamic retention tests were performed at 56 °C in a sandstone core with a porosity of ∼26% and a permeability of 117 and 287 mD. A history matching of the dynamic retention test was performed to determine the maximum and residual adsorption, IPV, and residual resistance factor (RRF). A laboratory-scale model was used to evaluate the displacement efficiency of CSNH-AC and HPAM through numerical simulation. According to the results, the nanohybrid exhibits better rheological behavior than the HPAM solution at a lower concentration. The nanopolymer sol adsorption and IPV (29,7 µg/grock, 14,5) are greater than those of the HPAM solution (9,2 µg/grock, 10), which was attributed to the difference between the rock permeabilities used in the laboratory tests (HPAM: 287 mD and CSNH-AC: 117 mD). The RF of both samples gradually increases with the increase in shear rate, while the RRF slightly decreases and tends to balance. However, the nanopolymer sol exhibits greater RF and RRF values than that of the polymer solution due to the strong flow resistance of the nanohybrid (higher retention in the porous media). According to the field-scale simulation, the incremental oil production could be 295,505 and 174,465 barrels for the nanopolymer sol and the HPAM solution, respectively (compared to waterflooding). This will represent an incremental recovery factor of 11.3% for the nanopolymer sol and 6.7% for the HPAM solution.

4.
Polymers (Basel) ; 12(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443578

RESUMO

In this study, a set of advanced characterization techniques were used to evaluate the morphological, structural, and thermal properties of a novel molecular hybrid based on silica nanoparticles/hydrolyzed polyacrylamide (CSNH-PC1), which was efficiently obtained using a two-step synthetic pathway. The morphology of the nanohybrid CSNH-PC1 was determined using scanning electron microscopy (SEM), dynamic light scattering (DLS), and nanotracking analysis (NTA) techniques. The presence of C, N, O, and Si atoms in the nanohybrid structure was verified using electron dispersive scanning (EDS). Moreover, the corresponding structural analysis was complemented using powder X-ray diffraction (XRD) and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR). The covalent bond between APTES-functionalized SiO2 nanoparticles (nSiO2-APTES), and the hydrolyzed polyacrylamide (HPAM) chain (MW ≈ 20.106 Da) was confirmed with high-resolution X-ray spectroscopy (XPS). Finally, the thermal properties of the nanohybrid were evaluated by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results showed that the CSNH-PC1 has a spherical morphology, with sizes between 420-480 nm and higher thermal resistance compared to HPAM polymers without modification, with a glass transition temperature of 360 °C. The integration of these advanced characterization techniques implemented here shows promising results for the study and evaluation of new nanomaterials with multiple applications.

5.
ACS Omega ; 4(14): 16171-16180, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592484

RESUMO

The main objective of this study is to evaluate the effect of the preparation of the nanofluids based on the interactions between the surfactants, nanoparticles, and brine for being applied in ultra-low interfacial tension (IFT) for an enhanced oil recovery process. Three methodologies for the addition of the salt-surfactant-nanoparticle components for the formulation of an efficient injection fluid were evaluated: order of addition (i) salts, nanoparticles, and surfactants, (ii) salts, surfactants, and then nanoparticles, (iii) surfactants, nanoparticles, and then salts. Also, the effects of the total dissolved solids and the surfactant concentration were evaluated in the interfacial tension for selecting the better formulation of the surfactant solution. Three nanoparticles of different chemical natures were studied: silica gel (SiO2), alumina (γ-Al2O3), and magnetic iron core-carbon shell nanoparticles. The nanoparticles were characterized using dynamic light scattering, zeta-potential, N2 physisorption at -196 °C, and Fourier transform infrared spectroscopy. In addition, the interactions between the surfactant, different types of nanoparticles, and brine were investigated through adsorption isotherms for the three methodologies. The nanofluids based on the different nanoparticles were evaluated through IFT measurements using the spinning drop method. The adsorbed amount of surfactant mixture on nanoparticles decreased in the order of alumina > silica gel > magnetic iron core-carbon shell nanoparticles. The minimum IFT achieved was 1 × 10-4 mN m-1 following the methodology II at a core-shell nanoparticle dosage of 100 mg L-1.

6.
Arch Esp Urol ; 57(4): 440-2, 2004 May.
Artigo em Espanhol | MEDLINE | ID: mdl-15272466

RESUMO

OBJECTIVES: To report the rare case of a patient with a ureteral polyp. METHODS: We describe the case of a 55-year-old female patient receiving care at the Celia Sanchez Manduley University Hospital in Manzanillo, Cuba, who was fortuitously diagnosed of a fibroepithelial polyp of the right ureter during the work up and treatment of an ovarian tumor. RESULTS: This case is the first of its kind in this hospital after 22 years, which confirms the rarity of ureteral tumors, specifically those of benign etiology. The absence of symptoms, specifically hematuria and pain, does not correspond to the reviewed articles. The chosen treatment was exeresis of the polyp at its base and frozen biopsy, followed by re-establishment of the urinary passage, as various authors recommend. Currently the endoscopical approach is recommended for its multiple advantages. CONCLUSIONS: We conclude that this disease is very rare, may have a symptomatic course and the treatment of choice is surgery with very good results.


Assuntos
Pólipos , Neoplasias Ureterais , Feminino , Humanos , Pessoa de Meia-Idade , Pólipos/diagnóstico , Pólipos/cirurgia , Neoplasias Ureterais/diagnóstico , Neoplasias Ureterais/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA