Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci Res ; 100(11): 2077-2089, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35946335

RESUMO

Based on our current understanding of insular regions, effects of chronic alcohol use on the insula may affect the integration of sensory-motor, socio-emotional, and cognitive function. There is no comprehensive understanding about these differences in individuals with alcohol use disorder that accounts for both structural and functional differences related to chronic alcohol use. The purpose of this study was to investigate these variations in both the anterior and posterior insula in persons with alcohol use disorder. We investigated insula gray matter volume, morphometry, white matter structural connectivity, and resting state functional connectivity in 75 participants with alcohol use disorder (females = 27) and 75 age-matched healthy control participants (females = 39). Results indicated structural differences mostly in the anterior regions, while functional connectivity differences were observed in both the anterior and posterior insula in those with alcohol use disorder. Differing connectivity was observed with frontal, parietal, occipital, cingulate, cerebellar, and temporal brain regions. While these results align with prior studies showing differences primarily in anterior insular regions, they also contribute to the existing literature suggesting differences in anterior insular connectivity with brain regions shown to be engaged during higher cognitive and emotional tasks.


Assuntos
Alcoolismo , Imageamento por Ressonância Magnética , Alcoolismo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem
2.
Alcohol Alcohol ; 57(6): 712-721, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-35760068

RESUMO

AIMS: The addiction neurocircuitry model describes the role of several brain circuits (drug reward, negative emotionality and craving/executive control) in alcohol use and subsequent development of alcohol use disorder (AUD). Human studies examining longitudinal change using resting-state functional magnetic resonance imaging (rs-fMRI) are needed to understand how functional changes to these circuits are caused by or contribute to continued AUD. METHODS: In order to characterize how intrinsic functional connectivity changes with sustained AUD, we analyzed rs-fMRI data from individuals with (n = 18; treatment seeking and non-treatment seeking) and without (n = 21) AUD collected on multiple visits as part of various research studies at the NIAAA intramural program from 2012 to 2020. RESULTS: Results of the seed correlation analysis showed that individuals with AUD had an increase in functional connectivity over time between emotionality and craving neurocircuits, and a decrease between executive control and reward networks. Post hoc investigations of AUD severity and alcohol consumption between scans revealed an additive effect of these AUD features in many of the circuits, such that more alcohol consumption or more severe AUD was associated with more pronounced changes to synchronicity. CONCLUSIONS: These findings suggest an increased concordance of networks underlying emotionality and compulsions toward drinking while also a reduction in control network connectivity, consistent with the addiction neurocircuitry model. Further, they suggest a compounding effect of continued heavy drinking on these vulnerabilities in neurocircuitry. More longitudinal research is necessary to understand the trajectories of individuals with AUD not adequately represented in this study, as well as whether this can inform effective harm reduction strategies.


Assuntos
Alcoolismo , Comportamento Aditivo , Humanos , Consumo de Bebidas Alcoólicas , Imageamento por Ressonância Magnética/métodos , Comportamento Aditivo/diagnóstico por imagem , Recompensa
3.
Alcohol Clin Exp Res ; 45(9): 1790-1803, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34342014

RESUMO

BACKGROUND: Alterations in white matter microstructure associated with chronic alcohol use have been demonstrated in previous diffusion tensor imaging (DTI) research. However, there is conflicting evidence as to whether such differences are influenced by an individual's biological sex. The purpose of the present study was to investigate the prevalence of sex differences in the white matter microstructure of the brains of individuals with alcohol use disorder (AUD) and healthy controls. METHODS: One hundred participants with AUD (38 female, aged 21 to 68) participating in the National Institute on Alcohol Abuse and Alcoholism's inpatient treatment program and 98 healthy control participants (52 female) underwent a diffusion-weighted scan. Images collected were processed for each subject individually, and voxelwise, tract-based spatial statistics analysis was conducted to test for differences in the DTI measures of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD). RESULTS: A 2-way, between-subjects ANCOVA that tested for differences by group and sex revealed widespread differences between AUD and control subjects, but no interaction between group and sex. Additional analyses exploring demographic and alcohol use variables showed significant impacts of age on white matter microstructure that were more pronounced in individuals with AUD. Plots of FA by age, sex, and group in major white matter tracts suggest a need to explore higher order interactions in larger samples. CONCLUSIONS: These results bolster recent findings of similar microstructural properties in men and women with AUD but provide a rationale for the consideration of age when investigating the impacts of chronic alcohol use on the brain's white matter.


Assuntos
Alcoolismo/patologia , Substância Branca/patologia , Adulto , Idoso , Envelhecimento/patologia , Consumo de Bebidas Alcoólicas , Análise de Variância , Anisotropia , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Transtornos Mentais/complicações , Transtornos Mentais/epidemiologia , Pessoa de Meia-Idade , Testes Neuropsicológicos , Caracteres Sexuais , Adulto Jovem
4.
Behav Brain Res ; 460: 114803, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38070689

RESUMO

Chemotherapy-induced peripheral neurotoxicity (CIPN) is a common, sometimes dose-limiting side effect of neurotoxic chemotherapy. Treatment is limited because its pathophysiology is poorly understood. Compared to research on peripheral mechanisms, the role of the brain in CIPN is understudied and it may be important to develop better treatments. We propose a novel task that assesses brain activation associated with attention to bodily sensations (interoception), without the use of painful stimulation, to understand how CIPN symptoms may be processed in the brain. The goals of this preliminary study were to assess, 1) feasibility of the task, 2) sensitivity to changes in brain activity, and 3) suitability for assessing relationships between brain activation and CIPN severity. Eleven participants with varying types of cancer completed a brain fMRI scan and rated CIPN severity (CIPN-20) before and/or 12 weeks after starting neurotoxic chemotherapy. The Bodily Attention Task is a 7.5-min long fMRI task involving attentional focus on the left fingertips, the heart, or a flashing word "target" for visual attention (reference condition). Feasibility was confirmed, as 73% of all data collected were usable and participants reported feeling or focus during 75% of the trials. Regarding brain activity, finger attention increased activation in somatosensory regions (primary sensory cortex, insula) and sensory integration regions (precuneus, dorsolateral prefrontal cortex). Exploratory analyses suggested that brain activation may be associated with CIPN severity. A larger sample size and accounting of confounding factors is needed to test for replication and to identify brain and interoceptive biomarkers to help improve the prediction, prevention, and treatment of CIPN.


Assuntos
Antineoplásicos , Síndromes Neurotóxicas , Doenças do Sistema Nervoso Periférico , Humanos , Antineoplásicos/efeitos adversos , Síndromes Neurotóxicas/diagnóstico por imagem , Síndromes Neurotóxicas/etiologia , Encéfalo/diagnóstico por imagem , Qualidade de Vida
5.
Res Sq ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39070661

RESUMO

Purpose A growing body of research suggests that the brain is implicated in cognitive impairment, fatigue, neuropathy, pain, nausea, sleep disturbances, distress, and other prevalent and burdensome symptoms of cancer and its treatments. Despite anecdotal evidence of difficulties using gold-standard magnetic resonance imaging (MRI) to study the brain, no studies have systematically reported reasons that patients with cancer do or do not complete research MRI scans, making it difficult to understand the role of the brain related to these symptoms. The goal of this study was to investigate these reasons and to suggest possible solutions. Methods We analyzed data from 72 patients with cancer (mostly breast and gastrointestinal) from 3 studies: MRI was mandatory in Study 1; MRI was optional in Studies 2-3. Patients provided reasons for completing or not completing optional research MRI scans. Results The percentage of scans completed when MRI was mandatory was 76%, and when optional, it was 36%. The most common reasons for not completing optional scans were claustrophobia (40%), safety contraindications (11%), discomfort (5%), a busy MRI schedule (5%), and the scanner being too far away (4%). Older patients were more likely to complete at least one scan (log(odds) = 0.09/year, p = 0.02). Conclusion Although brain MRI is feasible for many patients with cancer, it can be difficult or not feasible for patients with claustrophobia, safety issues, busy schedules, or transportation issues. Improving communication, comfort, and access to a scanner may help. Reducing inequities related to study participation can improve research supportive care research.

6.
Res Sq ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559210

RESUMO

Purpose: Chemotherapy-induced peripheral neurotoxicity (CIPN) is a prevalent, dose-limiting, tough-to-treat toxicity involving numbness, tingling, and pain in the extremities with enigmatic pathophysiology. This randomized controlled pilot study explored the feasibility and preliminary efficacy of exercise during chemotherapy on CIPN and the role of the interoceptive brain system, which processes bodily sensations. Methods: Nineteen patients (65±11 years old, 52% women; cancer type: breast, gastrointestinal, multiple myeloma) starting neurotoxic chemotherapy were randomized to 12 weeks of exercise (home-based, individually tailored, moderate intensity, progressive walking and resistance training) or active control (nutrition education). At pre-, mid-, and post-intervention, we assessed CIPN symptoms (primary clinical outcome: CIPN-20), CIPN signs (tactile sensitivity using monofilaments), and physical function (leg strength). At pre- and post-intervention, we used task-free ("resting") fMRI to assess functional connectivity in the interoceptive brain system, involving the salience and default mode networks. Results: The study was feasible (74-89% complete data across measures) and acceptable (95% retention). We observed moderate/large beneficial effects of exercise on CIPN symptoms (CIPN-20, 0-100 scale: -7.9±5.7, effect size [ES]=-0.9 at mid-intervention; -4.8±7.3, -ES=0.5 at post-intervention), CIPN signs (ES=-1.0 and -0.1), and physical function (ES=0.4 and 0.3). Patients with worse CIPN after neurotoxic chemotherapy had lower functional connectivity within the default mode network (R2=40-60%) and higher functional connectivity within the salience network (R2=20-40%). Exercise tended to increase hypoconnectivity and decrease hyperconnectivity seen in CIPN (R2 = 12%). Conclusion: Exercise during neurotoxic chemotherapy is feasible and may attenuate CIPN symptoms and signs, perhaps via changes in interoceptive brain circuitry. Future work should test for replication with larger samples. ClinicalTrials.gov identifier NCT03021174.

7.
Front Hum Neurosci ; 14: 60, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161529

RESUMO

Background: Although biofeedback using electrophysiology has been explored extensively, the approach of using neurofeedback corresponding to hemodynamic response is a relatively young field. Real time functional magnetic resonance imaging-based neurofeedback (rt-fMRI-NF) uses sensory feedback to operantly reinforce patterns of neural response. It can be used, for example, to alter visual perception, increase brain connectivity, and reduce depression symptoms. Within recent years, interest in rt-fMRI-NF in both research and clinical contexts has expanded considerably. As such, building a consensus regarding best practices is of great value. Objective: This systematic review is designed to describe and evaluate the variations in methodology used in previous rt-fMRI-NF studies to provide recommendations for rt-fMRI-NF study designs that are mostly likely to elicit reproducible and consistent effects of neurofeedback. Methods: We conducted a database search for fMRI neurofeedback papers published prior to September 26th, 2019. Of 558 studies identified, 146 met criteria for inclusion. The following information was collected from each study: sample size and type, task used, neurofeedback calculation, regulation procedure, feedback, whether feedback was explicitly related to changing brain activity, feedback timing, control group for active neurofeedback, how many runs and sessions of neurofeedback, if a follow-up was conducted, and the results of neurofeedback training. Results: rt-fMRI-NF is typically upregulation practice based on hemodynamic response from a specific region of the brain presented using a continually updating thermometer display. Most rt-fMRI-NF studies are conducted in healthy samples and half evaluate its effect on immediate changes in behavior or affect. The most popular control group method is to provide sham signal from another region; however, many studies do not compare use a comparison group. Conclusions: We make several suggestions for designs of future rt-fMRI-NF studies. Researchers should use feedback calculation methods that consider neural response across regions (i.e., SVM or connectivity), which should be conveyed as intermittent, auditory feedback. Participants should be given explicit instructions and should be assessed on individual differences. Future rt-fMRI-NF studies should use clinical samples; effectiveness of rt-fMRI-NF should be evaluated on clinical/behavioral outcomes at follow-up time points in comparison to both a sham and no feedback control group.

8.
Front Hum Neurosci ; 12: 531, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687047

RESUMO

Current research shows promise in restoring impaired hand function after stroke with the help of Mirror Visual Feedback (MVF), putatively by facilitating activation of sensorimotor areas of the brain ipsilateral to the moving limb. However, the MVF related clinical effects show variability across studies. MVF tasks that have been used place varying amounts of visuomotor demand on one's ability to complete the task. Therefore, we ask here whether varying visuomotor demand during MVF may translate to differences in brain activation patterns. If so, we argue that this may provide a mechanistic explanation for variable clinical effects. To address this, we used functional magnetic resonance imaging (fMRI) to investigate the interaction of target directed movement and MVF on the activation of, and functional connectivity between, regions within the visuomotor network. In an event-related fMRI design, twenty healthy subjects performed finger flexion movements using their dominant right hand, with feedback presented in a virtual reality (VR) environment. Visual feedback was presented in real time VR as either veridical feedback with and without a target (VT+ and VT-, respectively), or MVF with and without a target (MT+ and MT-, respectively). fMRI contrasts revealed predominantly activation in the ipsilateral intraparietal sulcus for the main effect of MVF and bilateral superior parietal activation for the main effect of target. Importantly, we noted significant and robust activation lateralized to the ipsilateral parietal cortex alone in the MT+ contrast with respect to the other conditions. This suggests that combining MVF with targeted movements performed using the right hand may redirect enhanced bilateral parietal activation due to target presentation to the ipsilateral cortex. Moreover, functional connectivity analysis revealed that the interaction between the ipsilateral parietal lobe and the motor cortex was significantly greater during target-directed movements with mirror feedback compared to veridical feedback. These findings provide a normative basis to investigate the integrity of these networks in patient populations. Identification of the brain regions involved in target directed movement with MVF in stroke may have important implications for optimal delivery of MVF based therapy.

9.
Front Hum Neurosci ; 11: 242, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28553218

RESUMO

Mirror visual feedback (MVF) training is a promising technique to promote activation in the lesioned hemisphere following stroke, and aid recovery. However, current outcomes of MVF training are mixed, in part, due to variability in the task undertaken during MVF. The present study investigated the hypothesis that movements directed toward visual targets may enhance MVF modulation of motor cortex (M1) excitability ipsilateral to the trained hand compared to movements without visual targets. Ten healthy subjects participated in a 2 × 2 factorial design in which feedback (veridical, mirror) and presence of a visual target (target present, target absent) for a right index-finger flexion task were systematically manipulated in a virtual environment. To measure M1 excitability, transcranial magnetic stimulation (TMS) was applied to the hemisphere ipsilateral to the trained hand to elicit motor evoked potentials (MEPs) in the untrained first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles at rest prior to and following each of four 2-min blocks of 30 movements (B1-B4). Targeted movement kinematics without visual feedback was measured before and after training to assess learning and transfer. FDI MEPs were decreased in B1 and B2 when movements were made with veridical feedback and visual targets were absent. FDI MEPs were decreased in B2 and B3 when movements were made with mirror feedback and visual targets were absent. FDI MEPs were increased in B3 when movements were made with mirror feedback and visual targets were present. Significant MEP changes were not present for the uninvolved ADM, suggesting a task-specific effect. Analysis of kinematics revealed learning occurred in visual target-directed conditions, but transfer was not sensitive to mirror feedback. Results are discussed with respect to current theoretical mechanisms underlying MVF-induced changes in ipsilateral excitability.

10.
Neuroimage Clin ; 13: 46-54, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27920978

RESUMO

Mirror visual feedback (MVF) is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical) or opposite (mirror) hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional) action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with non-invasive brain stimulation as a means of potentiating the effects of mirror training.


Assuntos
Retroalimentação Sensorial/fisiologia , Neuroimagem Funcional/métodos , Atividade Motora/fisiologia , Córtex Motor/fisiopatologia , Desempenho Psicomotor/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Adulto , Idoso , Feminino , Dedos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA