Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Physiol Plant ; 176(1): e14130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38842416

RESUMO

In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the 'Express' genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre-occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS-treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co-expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis-element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co-expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses.


Assuntos
Brassica napus , Secas , Regulação da Expressão Gênica de Plantas , Sementes , Estresse Fisiológico , Brassica napus/genética , Brassica napus/fisiologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmodioforídeos/fisiologia , Transcriptoma/genética
2.
Physiol Plant ; 175(4): e13975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616010

RESUMO

The identification of several fructan exohydrolases (FEHs, EC 3.2.1.80) in non-fructan accumulating plants raised the question of their roles. FEHs may be defense-related proteins involved in the interactions with fructan-accumulating microorganisms. Since known defense-related proteins are upregulated by defense-related phytohormones, we tested the hypothesis that FEHs of non-fructan accumulating plants are upregulated by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) using the model plant Arabidopsis thaliana and the agronomically relevant and genetically related species Brassica napus. By sequence homologies with the two known FEH genes of A. thaliana, At6-FEH, and At6&1-FEH, the genes coding for the putative B. napus FEHs, Bn6-FEH and Bn6&1-FEH, were identified. Plants were treated at root level with SA, methyl jasmonate (MeJA) or 1-aminocyclopropane-1-carboxylic acid (ACC). The transcript levels of defense-related and FEH genes were measured after treatments. MeJA and ACC did not upregulate FEHs, while HEL (HEVEIN-LIKE PREPROTEIN) expression was enhanced by both phytohormones. In both species, the expression of AOS, encoding a JA biosynthesis enzyme, was enhanced by MeJA and that of the defensine PDF1.2 and the ET signaling transcription factor ERF1/2 by ACC. In contrast, SA not only increased the expression of genes encoding antimicrobial proteins (PR1 and HEL) and the defense-related transcription factor WRKY70 but also that of FEH genes, in particular 6&1-FEH genes. This result supports the putative role of FEHs as defense-related proteins. Genotypic variability of SA-mediated FEH regulation (transcript level and activities) was observed among five varieties of B. napus, suggesting different susceptibilities toward fructan-accumulating pathogens.


Assuntos
Arabidopsis , Glicosídeo Hidrolases , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Sequência de Aminoácidos , Frutanos/metabolismo , Ácido Salicílico/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Ciclopentanos/farmacologia , Oxilipinas/farmacologia
3.
Genomics ; 111(6): 1629-1640, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30447277

RESUMO

Plasmodiophora brassicae is an obligate biotrophic pathogenic protist responsible for clubroot, a root gall disease of Brassicaceae species. In addition to the reference genome of the P. brassicae European e3 isolate and the draft genomes of Canadian or Chinese isolates, we present the genome of eH, a second European isolate. Refinement of the annotation of the eH genome led to the identification of the mitochondrial genome sequence, which was found to be bigger than that of Spongospora subterranea, another plant parasitic Plasmodiophorid phylogenetically related to P. brassicae. New pathways were also predicted, such as those for the synthesis of spermidine, a polyamine up-regulated in clubbed regions of roots. A P. brassicae pathway genome database was created to facilitate the functional study of metabolic pathways in transcriptomics approaches. These available tools can help in our understanding of the regulation of P. brassicae metabolism during infection and in response to diverse constraints.


Assuntos
Bases de Dados Genéticas , Genoma Mitocondrial , Genoma de Protozoário , Redes e Vias Metabólicas/fisiologia , Filogenia , Plasmodioforídeos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Plasmodioforídeos/genética , Plasmodioforídeos/metabolismo
4.
New Phytol ; 222(1): 468-479, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30393890

RESUMO

Quantitative disease resistance, often influenced by environmental factors, is thought to be the result of DNA sequence variants segregating at multiple loci. However, heritable differences in DNA methylation, so-called transgenerational epigenetic variants, also could contribute to quantitative traits. Here, we tested this possibility using the well-characterized quantitative resistance of Arabidopsis to clubroot, a Brassica major disease caused by Plasmodiophora brassicae. For that, we used the epigenetic recombinant inbred lines (epiRIL) derived from the cross ddm1-2 × Col-0, which show extensive epigenetic variation but limited DNA sequence variation. Quantitative loci under epigenetic control (QTLepi ) mapping was carried out on 123 epiRIL infected with P. brassicae and using various disease-related traits. EpiRIL displayed a wide range of continuous phenotypic responses. Twenty QTLepi were detected across the five chromosomes, with a bona fide epigenetic origin for 16 of them. The effect of five QTLepi was dependent on temperature conditions. Six QTLepi co-localized with previously identified clubroot resistance genes and QTL in Arabidopsis. Co-localization of clubroot resistance QTLepi with previously detected DNA-based QTL reveals a complex model in which a combination of allelic and epiallelic variations interacts with the environment to lead to variation in clubroot quantitative resistance.


Assuntos
Arabidopsis/genética , Arabidopsis/imunologia , Resistência à Doença/genética , Epigênese Genética , Variação Genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Sequência de Bases , Metilação de DNA/genética , Padrões de Herança/genética , Mutação/genética , Fenótipo , Plasmodioforídeos/fisiologia , Locos de Características Quantitativas/genética , Temperatura
5.
J Exp Bot ; 70(19): 5375-5390, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31145785

RESUMO

Plant disease resistance is often under quantitative genetic control. Thus, in a given interaction, plant cellular responses to infection are influenced by resistance or susceptibility alleles at different loci. In this study, a genetic linkage analysis was used to address the complexity of the metabolic responses of Brassica napus roots to infection by Plasmodiophora brassicae. Metabolome profiling and pathogen quantification in a segregating progeny allowed a comparative mapping of quantitative trait loci (QTLs) involved in resistance and in metabolic adjustments. Distinct metabolic modules were associated with each resistance QTL, suggesting the involvement of different underlying cellular mechanisms. This approach highlighted the possible role of gluconasturtiin and two unknown metabolites in the resistance conferred by two QTLs on chromosomes C03 and C09, respectively. Only two susceptibility biomarkers (glycine and glutathione) were simultaneously linked to the three main resistance QTLs, suggesting the central role of these compounds in the interaction. By contrast, several genotype-specific metabolic responses to infection were genetically unconnected to resistance or susceptibility. Likewise, variations of root sugar profiles, which might have influenced pathogen nutrition, were not found to be related to resistance QTLs. This work illustrates how genetic metabolomics can help to understand plant stress responses and their possible links with disease.


Assuntos
Brassica napus/genética , Metaboloma , Doenças das Plantas/genética , Plasmodioforídeos/fisiologia , Locos de Características Quantitativas , Brassica napus/microbiologia , Resistência à Doença/genética , Metabolômica , Doenças das Plantas/microbiologia
6.
Theor Appl Genet ; 131(8): 1627-1643, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29728747

RESUMO

KEY MESSAGE: A repertoire of the genomic regions involved in quantitative resistance to Leptosphaeria maculans in winter oilseed rape was established from combined linkage-based QTL and genome-wide association (GWA) mapping. Linkage-based mapping of quantitative trait loci (QTL) and genome-wide association studies are complementary approaches for deciphering the genomic architecture of complex agronomical traits. In oilseed rape, quantitative resistance to blackleg disease, caused by L. maculans, is highly polygenic and is greatly influenced by the environment. In this study, we took advantage of multi-year data available on three segregating populations derived from the resistant cv Darmor and multi-year data available on oilseed rape panels to obtain a wide overview of the genomic regions involved in quantitative resistance to this pathogen in oilseed rape. Sixteen QTL regions were common to at least two biparental populations, of which nine were the same as previously detected regions in a multi-parental design derived from different resistant parents. Eight regions were significantly associated with quantitative resistance, of which five on A06, A08, A09, C01 and C04 were located within QTL support intervals. Homoeologous Brassica napus genes were found in eight homoeologous QTL regions, which corresponded to 657 pairs of homoeologous genes. Potential candidate genes underlying this quantitative resistance were identified. Genomic predictions and breeding are also discussed, taking into account the highly polygenic nature of this resistance.


Assuntos
Brassica napus/genética , Resistência à Doença/genética , Ligação Genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Ascomicetos , Brassica napus/microbiologia , Mapeamento Cromossômico , Estudos de Associação Genética , Doenças das Plantas/microbiologia
7.
BMC Genomics ; 17: 124, 2016 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26897486

RESUMO

BACKGROUND: Genome-wide association (GWA) mapping has recently emerged as a valuable approach for refining the genetic basis of polygenic resistance to plant diseases, which are increasingly used in integrated strategies for durable crop protection. Aphanomyces euteiches is a soil-borne pathogen of pea and other legumes worldwide, which causes yield-damaging root rot. Linkage mapping studies reported quantitative trait loci (QTL) controlling resistance to A. euteiches in pea. However the confidence intervals (CIs) of these QTL remained large and were often linked to undesirable alleles, which limited their application in breeding. The aim of this study was to use a GWA approach to validate and refine CIs of the previously reported Aphanomyces resistance QTL, as well as identify new resistance loci. METHODS: A pea-Aphanomyces collection of 175 pea lines, enriched in germplasm derived from previously studied resistant sources, was evaluated for resistance to A. euteiches in field infested nurseries in nine environments and with two strains in climatic chambers. The collection was genotyped using 13,204 SNPs from the recently developed GenoPea Infinium® BeadChip. RESULTS: GWA analysis detected a total of 52 QTL of small size-intervals associated with resistance to A. euteiches, using the recently developed Multi-Locus Mixed Model. The analysis validated six of the seven previously reported main Aphanomyces resistance QTL and detected novel resistance loci. It also provided marker haplotypes at 14 consistent QTL regions associated with increased resistance and highlighted accumulation of favourable haplotypes in the most resistant lines. Previous linkages between resistance alleles and undesired late-flowering alleles for dry pea breeding were mostly confirmed, but the linkage between loci controlling resistance and coloured flowers was broken due to the high resolution of the analysis. A high proportion of the putative candidate genes underlying resistance loci encoded stress-related proteins and others suggested that the QTL are involved in diverse functions. CONCLUSION: This study provides valuable markers, marker haplotypes and germplasm lines to increase levels of partial resistance to A. euteiches in pea breeding.


Assuntos
Aphanomyces , Mapeamento Cromossômico , Resistência à Doença/genética , Pisum sativum/genética , Doenças das Plantas/genética , Alelos , Intervalos de Confiança , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Haplótipos , Desequilíbrio de Ligação , Modelos Genéticos , Pisum sativum/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
8.
BMC Plant Biol ; 16(1): 251, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27835985

RESUMO

BACKGROUND: The induction of alcohol fermentation in roots is a plant adaptive response to flooding stress and oxygen deprivation. Available transcriptomic data suggest that fermentation-related genes are also frequently induced in roots infected with gall forming pathogens, but the biological significance of this induction is unclear. In this study, we addressed the role of hypoxia responses in Arabidopsis roots during infection by the clubroot agent Plasmodiophora brassicae. RESULTS: The hypoxia-related gene markers PYRUVATE DECARBOXYLASE 1 (PDC1), PYRUVATE DECARBOXYLASE 2 (PDC2) and ALCOHOL DEHYDROGENASE 1 (ADH1) were induced during secondary infection by two isolates of P. brassicae, eH and e2. PDC2 was highly induced as soon as 7 days post inoculation (dpi), i.e., before the development of gall symptoms, and GUS staining revealed that ADH1 induction was localised in infected cortical cells of root galls at 21 dpi. Clubroot symptoms were significantly milder in the pdc1 and pdc2 mutants compared with Col-0, but a null T-DNA insertional mutation of ADH1 did not affect clubroot susceptibility. The Arg/N-end rule pathway of ubiquitin-mediated proteolysis controls oxygen sensing in plants. Mutants of components of this pathway, ate1 ate2 and prt6, that both exhibit constitutive hypoxia responses, showed enhanced clubroot symptoms. In contrast, gall development was reduced in quintuple and sextuple mutants where the activity of all oxygen-sensing Group VII Ethylene Response Factor transcription factors (ERFVIIs) is absent (erfVII and prt6 erfVII). CONCLUSIONS: Our data demonstrate that the induction of PDC1 and PDC2 during the secondary infection of roots by P. brassicae contributes positively to clubroot development, and that this is controlled by oxygen-sensing through ERFVIIs. The absence of any major role of ADH1 in symptom development may also suggest that PDC activity could contribute to the formation of galls through the activation of a PDH bypass.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Plasmodioforídeos/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia
9.
Plant Cell Physiol ; 56(11): 2158-68, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26363358

RESUMO

The role of salicylic acid (SA) and jasmonic acid (JA) signaling in resistance to root pathogens has been poorly documented. We assessed the contribution of SA and JA to basal and partial resistance of Arabidopsis to the biotrophic clubroot agent Plasmodiophora brassicae. SA and JA levels as well as the expression of the SA-responsive genes PR2 and PR5 and the JA-responsive genes ARGAH2 and THI2.1 were monitored in infected roots of the accessions Col-0 (susceptible) and Bur-0 (partially resistant). SA signaling was activated in Bur-0 but not in Col-0. The JA pathway was weakly activated in Bur-0 but was strongly induced in Col-0. The contribution of both pathways to clubroot resistance was then assessed using exogenous phytohormone application and mutants affected in SA or JA signaling. Exogenous SA treatment decreased clubroot symptoms in the two Arabidopsis accessions, whereas JA treatment reduced clubroot symptoms only in Col-0. The cpr5-2 mutant, in which SA responses are constitutively induced, was more resistant to clubroot than the corresponding wild type, and the JA signaling-deficient mutant jar1 was more susceptible. Finally, we showed that the JA-mediated induction of NATA1 drove N(δ)-acetylornithine biosynthesis in infected Col-0 roots. The 35S::NATA1 and nata1 lines displayed reduced or enhanced clubroot symptoms, respectively, thus suggesting that in Col-0 this pathway was involved in the JA-mediated basal clubroot resistance. Overall, our data support the idea that, depending on the Arabidopsis accession, both SA and JA signaling can play a role in partial inhibition of clubroot development in compatible interactions with P. brassicae.


Assuntos
Arabidopsis/imunologia , Arabidopsis/parasitologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Plasmodioforídeos/fisiologia , Ácido Salicílico/metabolismo , Transdução de Sinais , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo
10.
BMC Genomics ; 15: 498, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24948032

RESUMO

BACKGROUND: Several major crop species are current or ancient polyploids. To better describe the genetic factors controlling traits of agronomic interest (QTL), it is necessary to understand the structural and functional organisation of these QTL regions in relation to genome duplication. We investigated quantitative resistance to the fungal disease stem canker in Brassica napus, a highly duplicated amphidiploid species, to assess the proportion of resistance QTL located at duplicated positions. RESULTS: Genome-wide association analysis on a panel of 116 oilseed rape varieties genotyped with 3228 SNP indicated that 321 markers, corresponding to 64 genomic regions, are associated with resistance to stem canker. These genomic regions are relatively equally distributed on the A (53%) and C (47%) genomes of B. napus. Overall, 44% of these regions (28/64) are duplicated homoeologous regions. They are located in duplications of six (E, J, R, T, U and W) of the 24 ancestral blocks that constitute the B. napus genome. Overall, these six ancestral blocks have 34 duplicated copies in the B.napus genome. Almost all of the duplicated copies (82% of the 34 regions) harboured resistance associated markers for stem canker resistance, which suggests structural and functional conservation of genetic factors involved in this trait in B. napus. CONCLUSIONS: Our study provides information on the involvement of duplicated loci in the control of stem canker resistance in B. napus. Further investigation of the similarity/divergence in sequence and gene content of these duplicated regions will provide insight into the conservation and allelic diversity of the underlying genes.


Assuntos
Brassica napus/genética , Duplicação Cromossômica , Resistência à Doença/genética , Doenças das Plantas/genética , Brassica napus/microbiologia , Mapeamento Cromossômico , Genes de Plantas , Estudos de Associação Genética , Ligação Genética , Marcadores Genéticos , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Poliploidia , Locos de Características Quantitativas , Característica Quantitativa Herdável
11.
Front Plant Sci ; 15: 1245545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872892

RESUMO

The resistance of Arabidopsis thaliana to clubroot, a major disease of Brassicaceae caused by the obligate protist Plasmodiophora brassicae, is controlled in part by epigenetic factors. The detection of some of these epigenetic quantitative trait loci (QTLepi) has been shown to depend on experimental conditions. The aim of the present study was to assess whether and how temperature and/or soil water availability influenced both the detection and the extent of the effect of response QTLepi. The epigenetic recombinant inbred line (epiRIL) population, derived from the cross between ddm1-2 and Col-0 (partially resistant and susceptible to clubroot, respectively), was phenotyped for response to P. brassicae under four abiotic conditions including standard conditions, a 5°C temperature increase, drought, and flooding. The abiotic constraints tested had a significant impact on both the leaf growth of the epiRIL population and the outcome of the epiRIL-pathogen interaction. Linkage analysis led to the detection of a total of 31 QTLepi, 18 of which were specific to one abiotic condition and 13 common to at least two environments. EpiRIL showed significant plasticity under epigenetic control, which appeared to be specific to the traits evaluated and to the abiotic conditions. These results highlight that the environment can affect the epigenetic architecture of plant growth and immune responses and advance our understanding of the epigenetic factors underlying plasticity in response to climate change.

12.
Plant Commun ; 5(5): 100824, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38268192

RESUMO

Clubroot caused by the protist Plasmodiophora brassicae is a major disease affecting cultivated Brassicaceae. Using a combination of quantitative trait locus (QTL) fine mapping, CRISPR-Cas9 validation, and extensive analyses of DNA sequence and methylation patterns, we revealed that the two adjacent neighboring NLR (nucleotide-binding and leucine-rich repeat) genes AT5G47260 and AT5G47280 cooperate in controlling broad-spectrum quantitative partial resistance to the root pathogen P. brassicae in Arabidopsis and that they are epigenetically regulated. The variation in DNA methylation is not associated with any nucleotide variation or any transposable element presence/absence variants and is stably inherited. Variations in DNA methylation at the Pb-At5.2 QTL are widespread across Arabidopsis accessions and correlate negatively with variations in expression of the two genes. Our study demonstrates that natural, stable, and transgenerationally inherited epigenetic variations can play an important role in shaping resistance to plant pathogens by modulating the expression of immune receptors.


Assuntos
Arabidopsis , Resistência à Doença , Doenças das Plantas , Arabidopsis/genética , Arabidopsis/imunologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Resistência à Doença/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Metilação de DNA , Plasmodioforídeos/fisiologia , Locos de Características Quantitativas/genética , Proteínas de Arabidopsis/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Alelos
13.
BMC Evol Biol ; 13: 87, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23601377

RESUMO

BACKGROUND: The Ran GTPase Activating Protein 2 (RanGAP2) was first described as a regulator of mitosis and nucleocytoplasmic trafficking. It was then found to interact with the Coiled-Coil domain of the Rx and GPA2 resistance proteins, which confer resistance to Potato Virus X (PVX) and potato cyst nematode Globodera pallida, respectively. RanGAP2 is thought to mediate recognition of the avirulence protein GP-RBP-1 by GPA2. However, the Gpa2-induced hypersensitive response appears to be relatively weak and Gpa2 is limited in terms of spectrum of efficiency as it is effective against only two nematode populations. While functional and evolutionary analyses of Gp-Rbp-1 and Gpa2 identified key residues in both the resistance and avirulence proteins that are involved in recognition determination, whether variation in RanGAP2 also plays a role in pathogen recognition has not been investigated. RESULTS: We amplified a total of 147 RanGAP2 sequences from 55 accessions belonging to 18 different di-and tetraploid Solanum species from the section Petota. Among the newly identified sequences, 133 haplotypes were obtained and 19.1% of the nucleotide sites were found to be polymorphic. The observed intra-specific nucleotide diversity ranges from 0.1 to 1.3%. Analysis of the selection pressures acting on RanGAP2 suggests that this gene evolved mainly under purifying selection. Nonetheless, we identified polymorphic positions in the protein sequence at the intra-specific level, which could modulate the activity of RanGAP2. Two polymorphic sites and a three amino-acid deletion in RanGAP2 were found to affect the timing and intensity of the Gpa2-induced hypersensitive response to avirulent GP-RBP-1 variants even though they did not confer any gain of recognition of virulent GP-RBP-1 variants. CONCLUSIONS: Our results highlight how a resistance gene co-factor can manage in terms of evolution both an established role as a cell housekeeping gene and an implication in plant parasite interactions. StRanGAP2 gene appears to evolve under purifying selection. Its variability does not seem to influence the specificity of GPA2 recognition but is able to modulate this activity by enhancing the defence response. It seems therefore that the interaction with the plant resistance protein GPA2 (and/or Rx) rather than with the nematode effector was the major force in the evolution of the RanGAP2 locus in potato. From a mechanistic point of view these results are in accordance with a physical interaction of RanGAP2 with GPA2 and suggest that RBP-1 would rather bind the RanGAP2-GPA2 complex than the RanGAP2 protein alone.


Assuntos
Evolução Molecular , Proteínas Ativadoras de GTPase/genética , Variação Genética , Proteínas de Helminto/imunologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Solanum tuberosum/genética , Tylenchoidea/imunologia , Animais , Sequência de Bases , Proteínas Ativadoras de GTPase/imunologia , Proteínas de Helminto/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Ligação Proteica , Seleção Genética , Solanum tuberosum/imunologia , Solanum tuberosum/parasitologia , Tylenchoidea/genética
14.
Funct Integr Genomics ; 13(2): 191-205, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23420032

RESUMO

To date, studies of the molecular basis of disease resistance mainly focused on qualitative resistance. However, deciphering mechanisms underlying quantitative resistance could lead to insights into the relationship between qualitative and quantitative resistance and guide the utilization of these two types of resistance to produce durably resistant cultivars. A functional genomics approach, using the CATMA whole-genome microarray, was used to detect changes in gene expression associated with partial quantitative resistance in the Arabidopsis thaliana-Plasmodiophora brassicae pathosystem. The time course of transcript abundance during partial clubroot resistance response was monitored at the whole plant level, and direct comparisons between partial resistance and susceptibility responses were made using the same host genotype. An increasingly complex host response was revealed, as was the differential influence of P. brassicae infection on the transcription of Arabidopsis genes according to the isolate used. We observed, at the transcriptomic level, that metabolic diversion by the pathogen was reduced or delayed, classical plant defense responses were induced earlier and/or more strongly, and cell enlargement and proliferation were actively inhibited in the partial quantitative resistance response compared to the susceptible one.


Assuntos
Arabidopsis/imunologia , Arabidopsis/metabolismo , Divisão Celular , Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/citologia , Arabidopsis/parasitologia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Raízes de Plantas/citologia , Raízes de Plantas/imunologia , Raízes de Plantas/parasitologia , Tumores de Planta/parasitologia , Plasmodioforídeos/isolamento & purificação , Plasmodioforídeos/fisiologia , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo
15.
Mol Plant Microbe Interact ; 25(11): 1478-91, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22809276

RESUMO

Clubroot disease affects all Brassicaceae spp. and is caused by the obligate biotroph pathogen Plasmodiophora brassicae. The development of galls on the root system is associated with the establishment of a new carbon metabolic sink. Here, we aimed to deepen our knowledge of the involvement of primary metabolism in the Brassica napus response to clubroot infection. We studied the dynamics and the diversity of the metabolic responses to the infection. Root system metabotyping was carried out for 18 rapeseed genotypes displaying different degrees of symptom severity, under inoculated and noninoculated conditions at 42 days postinoculation (dpi). Clubroot susceptibility was positively correlated with clubroot-induced accumulation of several amino acids. Although glucose and fructose accumulated in some genotypes with minor symptoms, their levels were negatively correlated to the disease index across the whole set of genotypes. The dynamics of the metabolic response were studied for the susceptible genotype 'Yudal,' which allowed an "early" metabolic response (established from 14 to 28 dpi) to be differentiated from a "late" response (from 35 dpi). We discuss the early accumulation of amino acids in the context of the establishment of a nitrogen metabolic sink and the hypothetical biological role of the accumulation of glutathione and S-methylcysteine.


Assuntos
Brassica rapa/metabolismo , Brassica rapa/parasitologia , Doenças das Plantas/parasitologia , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologia , Plasmodioforídeos/patogenicidade , Variação Genética , Genótipo
16.
Plant Cell Physiol ; 53(5): 901-11, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22433460

RESUMO

Arginase induction can play a defensive role through the reduction of arginine availability for phytophageous insects. Arginase activity is also induced during gall growth caused by Plasmodiophora brassicae infection in roots of Arabidopsis thaliana; however, its possible role in this context has been unclear. We report here that the mutation of the arginase-encoding gene ARGAH2 abrogates clubroot-induced arginase activity and results in enhanced gall size in infected roots, suggesting that arginase plays a defensive role. Induction of arginase activity in infected roots was impaired in the jar1 mutant, highlighting a link between the arginase response to clubroot and jasmonate signaling. Clubroot-induced accumulation of the principal amino acids in galls was not affected by the argah2 mutation. Because ARGAH2 was previously reported to control auxin response, we investigated the role of ARGAH2 in callus induction. ARGAH2 was found to be highly induced in auxin/cytokinin-triggered aseptic plant calli, and callus development was enhanced in argah2 in the absence of the pathogen. We hypothesized that arginase contributes to a negative control over clubroot symptoms, by reducing hormone-triggered cellular proliferation.


Assuntos
Amidoidrolases/biossíntese , Proteínas de Arabidopsis/biossíntese , Arabidopsis/enzimologia , Arabidopsis/parasitologia , Tumores de Planta/parasitologia , Plasmodioforídeos/fisiologia , Amidoidrolases/genética , Aminoácidos/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Ciclopentanos/farmacologia , Compostos de Diazônio/farmacologia , Indução Enzimática/efeitos dos fármacos , Hidroxilação/efeitos dos fármacos , Isoleucina/análogos & derivados , Isoleucina/farmacologia , Mutação/genética , Especificidade de Órgãos/efeitos dos fármacos , Oxilipinas/farmacologia , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Plasmodioforídeos/efeitos dos fármacos , Piridinas/farmacologia
17.
Front Plant Sci ; 13: 790563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222461

RESUMO

Nitrogen fertilization has been reported to influence the development of clubroot, a root disease of Brassicaceae species, caused by the obligate protist Plasmodiophora brassicae. Our previous works highlighted that low-nitrogen fertilization induced a strong reduction of clubroot symptoms in some oilseed rape genotypes. To further understand the underlying mechanisms, the response to P. brassicae infection was investigated in two genotypes "Yudal" and HD018 harboring sharply contrasted nitrogen-driven modulation of resistance toward P. brassicae. Targeted hormone and metabolic profiling, as well as RNA-seq analysis, were performed in inoculated and non-inoculated roots at 14 and 27 days post-inoculation, under high and low-nitrogen conditions. Clubroot infection triggered a large increase of SA concentration and an induction of the SA gene markers expression whatever the genotype and nitrogen conditions. Overall, metabolic profiles suggested that N-driven induction of resistance was independent of SA signaling, soluble carbohydrate and amino acid concentrations. Low-nitrogen-driven resistance in "Yudal" was associated with the transcriptional regulation of a small set of genes, among which the induction of NRT2- and NR-encoding genes. Altogether, our results indicate a possible role of nitrate transporters and auxin signaling in the crosstalk between plant nutrition and partial resistance to pathogens.

18.
J Agric Food Chem ; 70(16): 5245-5261, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35420430

RESUMO

Glucosinolate (GLS) and phenolic contents in Brassicaceae contribute to biotic and abiotic stress responses. Breeding crop accessions harboring agroecologically relevant metabolic profiles require a characterization of the chemical diversity in Brassica germplasm. This work investigates the diversity of specialized metabolites in 281 accessions of B. napus. First, an LC-HRMS2-based approach allowed the annotation of 32 phenolics and 36 GLSs, revealing 13 branched and linear alkyl-GLSs and 4 isomers of hydroxyphenylalkyl-GLSs, many of which have been rarely reported in Brassica. Then, quantitative UPLC-UV-MS-based profiling was performed in leaves and roots for the whole panel. This revealed striking variations in the content of 1-methylpropyl-GLS (glucocochlearin) and a large variation of tetra- and penta-glucosyl kaempferol derivatives among accessions. It also highlighted two main chemotypes related to sinapoyl-O-hexoside and kaempferol-O-trihexoside contents. By offering an unprecedented overview of the phytochemical diversity in B. napus, this work provides a useful resource for chemical ecology and breeding.


Assuntos
Brassica napus , Brassica , Brassica/metabolismo , Brassica napus/metabolismo , Cruzamento , Glucosinolatos/metabolismo , Quempferóis , Fenóis
19.
New Phytol ; 191(4): 1083-1094, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21599669

RESUMO

In Arabidopsis thaliana the induction of plant trehalase during clubroot disease was proposed to act as a defense mechanism in the susceptible accession Col-0, which could thereby cope with the accumulation of pathogen-synthesized trehalose. In the present study, we assessed trehalose activity and tolerance to trehalose in the clubroot partially resistant accession Bur-0. We compared both accessions for several trehalose-related physiological traits during clubroot infection. A quantitative trait loci (QTLs) analysis of tolerance to exogenous trehalose was also conducted on a Bur-0xCol-0 RIL progeny. Trehalase activity was not induced by clubroot in Bur-0 and the inhibition of trehalase by validamycin treatments resulted in the enhancement of clubroot symptoms only in Col-0. In pathogen-free cultures, Bur-0 showed less trehalose-induced toxicity symptoms than Col-0. A QTL analysis identified one locus involved in tolerance to trehalose overlapping the confidence interval of a QTL for resistance to Plasmodiophora brassicae. This colocalization was confirmed using heterogeneous inbred family (HIF) lines. Although not based on trehalose catabolism capacity, partial resistance to clubroot is to some extent related to the tolerance to trehalose accumulation in Bur-0. These findings support an original model where contrasting primary metabolism-related regulations could contribute to the partial resistance to a plant pathogen.


Assuntos
Arabidopsis/imunologia , Resistência à Doença , Doenças das Plantas/imunologia , Raízes de Plantas/efeitos dos fármacos , Trealose/farmacologia , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/parasitologia , Metabolismo dos Carboidratos , Inositol/análogos & derivados , Inositol/farmacologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Raízes de Plantas/metabolismo , Plasmodioforídeos/patogenicidade , Reação em Cadeia da Polimerase/métodos , Locos de Características Quantitativas , Trealase/metabolismo , Trealose/metabolismo
20.
Front Microbiol ; 12: 701067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305867

RESUMO

Nitrogen fertilization can affect the susceptibility of Brassica napus to the telluric pathogen Plasmodiophora brassicae. Our previous works highlighted that the influence of nitrogen can strongly vary regarding plant cultivar/pathogen strain combinations, but the underlying mechanisms are unknown. The present work aims to explore how nitrogen supply can affect the molecular physiology of P. brassicae through its life epidemiological cycle. A time-course transcriptome experiment was conducted to study the interaction, under two conditions of nitrogen supply, between isolate eH and two B. napus genotypes (Yudal and HD-018), harboring (or not harboring) low nitrogen-conditional resistance toward this isolate (respectively). P. brassicae transcriptional patterns were modulated by nitrogen supply, these modulations being dependent on both host-plant genotype and kinetic time. Functional analysis allowed the identification of P. brassicae genes expressed during the secondary phase of infection, which may play a role in the reduction of Yudal disease symptoms in low-nitrogen conditions. Candidate genes included pathogenicity-related genes ("NUDIX," "carboxypeptidase," and "NEP-proteins") and genes associated to obligate biotrophic functions of P. brassicae. This work illustrates the importance of considering pathogen's physiological responses to get a better understanding of the influence of abiotic factors on clubroot resistance/susceptibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA