Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Physiol Rev ; 102(1): 61-154, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34254835

RESUMO

The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall input-output (I/O) relationships. Up to this point, our accounts of the systems go along similar lines. The next processing steps differ considerably: whereas in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers, were little studied. Only recently has there been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little-connected fields.


Assuntos
Bulbo Olfatório/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Células Receptoras Sensoriais/fisiologia , Olfato/fisiologia , Animais , Humanos , Odorantes , Vertebrados/fisiologia
2.
Eur J Neurosci ; 60(1): 3719-3741, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38758670

RESUMO

Across vertebrate species, the olfactory epithelium (OE) exhibits the uncommon feature of lifelong neuronal turnover. Epithelial stem cells give rise to new neurons that can adequately replace dying olfactory receptor neurons (ORNs) during developmental and adult phases and after lesions. To relay olfactory information from the environment to the brain, the axons of the renewed ORNs must reconnect with the olfactory bulb (OB). In Xenopus laevis larvae, we have previously shown that this process occurs between 3 and 7 weeks after olfactory nerve (ON) transection. In the present study, we show that after 7 weeks of recovery from ON transection, two functionally and spatially distinct glomerular clusters are reformed in the OB, akin to those found in non-transected larvae. We also show that the same odourant response tuning profiles observed in the OB of non-transected larvae are again present after 7 weeks of recovery. Next, we show that characteristic odour-guided behaviour disappears after ON transection but recovers after 7-9 weeks of recovery. Together, our findings demonstrate that the olfactory system of larval X. laevis regenerates with high accuracy after ON transection, leading to the recovery of odour-guided behaviour.


Assuntos
Larva , Bulbo Olfatório , Xenopus laevis , Animais , Bulbo Olfatório/fisiologia , Regeneração Nervosa/fisiologia , Odorantes , Traumatismos do Nervo Olfatório , Nervo Olfatório/fisiologia , Mucosa Olfatória/citologia , Mucosa Olfatória/fisiologia , Olfato/fisiologia , Neurônios Receptores Olfatórios/fisiologia
3.
Cell Tissue Res ; 383(1): 301-325, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33496878

RESUMO

Extant anuran amphibians originate from an evolutionary intersection eventually leading to fully terrestrial tetrapods. In many ways, they have to deal with exposure to both terrestrial and aquatic environments: (i) phylogenetically, as derivatives of the first tetrapod group that conquered the terrestrial environment in evolution; (ii) ontogenetically, with a development that includes aquatic and terrestrial stages connected via metamorphic remodeling; and (iii) individually, with common changes in habitat during the life cycle. Our knowledge about the structural organization and function of the amphibian olfactory system and its relevance still lags behind findings on mammals. It is a formidable challenge to reveal underlying general principles of circuity-related, cellular, and molecular properties that are beneficial for an optimized sense of smell in water and air. Recent findings in structural organization coupled with behavioral observations could help to understand the importance of the sense of smell in this evolutionarily important animal group. We describe the structure of the peripheral olfactory organ, the olfactory bulb, and higher olfactory centers on a tissue, cellular, and molecular levels. Differences and similarities between the olfactory systems of anurans and other vertebrates are reviewed. Special emphasis lies on adaptations that are connected to the distinct demands of olfaction in water and air environment. These particular adaptations are discussed in light of evolutionary trends, ontogenetic development, and ecological demands.


Assuntos
Ar/análise , Receptores Odorantes/fisiologia , Água/química , Anfíbios , Animais
4.
Cell Tissue Res ; 386(3): 491-511, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34580751

RESUMO

During metamorphosis, the olfactory system of anuran tadpoles undergoes substantial restructuring. The main olfactory epithelium in the principal nasal cavity of Xenopus laevis tadpoles is associated with aquatic olfaction and transformed into the adult air-nose, while a new adult water-nose emerges in the middle cavity. Impacts of this metamorphic remodeling on odor processing, behavior, and network structure are still unexplored. Here, we used neuronal tracings, calcium imaging, and behavioral experiments to examine the functional connectivity between the epithelium and the main olfactory bulb during metamorphosis. In tadpoles, olfactory receptor neurons in the principal cavity project axons to glomeruli in the ventral main olfactory bulb. These projections are gradually replaced by receptor neuron axons from the newly forming middle cavity epithelium. Despite this reorganization in the ventral bulb, two spatially segregated odor processing streams remain undisrupted and behavioral responses to waterborne odorants are unchanged. Contemporaneously, new receptor neurons in the remodeling principal cavity innervate the emerging dorsal part of the bulb, which displays distinct wiring features. Glomeruli around its midline are innervated from the left and right nasal epithelia. Additionally, postsynaptic projection neurons in the dorsal bulb predominantly connect to multiple glomeruli, while half of projection neurons in the ventral bulb are uni-glomerular. Our results show that the "water system" remains functional despite metamorphic reconstruction. The network differences between the dorsal and ventral olfactory bulb imply a higher degree of odor integration in the dorsal main olfactory bulb. This is possibly connected with the processing of different odorants, airborne vs. waterborne.


Assuntos
Metamorfose Biológica/fisiologia , Bulbo Olfatório/fisiologia , Animais , Xenopus laevis
5.
J Biol Chem ; 294(33): 12507-12520, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31248986

RESUMO

The limited sodium availability of freshwater and terrestrial environments was a major physiological challenge during vertebrate evolution. The epithelial sodium channel (ENaC) is present in the apical membrane of sodium-absorbing vertebrate epithelia and evolved as part of a machinery for efficient sodium conservation. ENaC belongs to the degenerin/ENaC protein family and is the only member that opens without an external stimulus. We hypothesized that ENaC evolved from a proton-activated sodium channel present in ionocytes of freshwater vertebrates and therefore investigated whether such ancestral traits are present in ENaC isoforms of the aquatic pipid frog Xenopus laevis Using whole-cell and single-channel electrophysiology of Xenopus oocytes expressing ENaC isoforms assembled from αßγ- or δßγ-subunit combinations, we demonstrate that Xenopus δßγ-ENaC is profoundly activated by extracellular acidification within biologically relevant ranges (pH 8.0-6.0). This effect was not observed in Xenopus αßγ-ENaC or human ENaC orthologs. We show that protons interfere with allosteric ENaC inhibition by extracellular sodium ions, thereby increasing the probability of channel opening. Using homology modeling of ENaC structure and site-directed mutagenesis, we identified a cleft region within the extracellular loop of the δ-subunit that contains several acidic amino acid residues that confer proton-sensitivity and enable allosteric inhibition by extracellular sodium ions. We propose that Xenopus δßγ-ENaC can serve as a model for investigating ENaC transformation from a proton-activated toward a constitutively-active ion channel. Such transformation might have occurred during the evolution of tetrapod vertebrates to enable bulk sodium absorption during the water-to-land transition.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Proteínas de Xenopus/metabolismo , Regulação Alostérica , Animais , Canais Epiteliais de Sódio/genética , Humanos , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis
6.
J Biol Chem ; 293(18): 6647-6658, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29576549

RESUMO

The epithelial sodium channel (ENaC) is a critical regulator of vertebrate electrolyte homeostasis. ENaC is the only constitutively open ion channel in the degenerin/ENaC protein family, and its expression, membrane abundance, and open probability therefore are tightly controlled. The canonical ENaC is composed of three subunits (α, ß, and γ), but a fourth δ-subunit may replace α and form atypical δßγ-ENaCs. Using Xenopus laevis as a model, here we found that mRNAs of the α- and δ-subunits are differentially expressed in different tissues and that δ-ENaC predominantly is present in the urogenital tract. Using whole-cell and single-channel electrophysiology of oocytes expressing Xenopus αßγ- or δßγ-ENaC, we demonstrate that the presence of the δ-subunit enhances the amount of current generated by ENaC due to an increased open probability, but also changes current into a transient form. Activity of canonical ENaCs is critically dependent on proteolytic processing of the α- and γ-subunits, and immunoblotting with epitope-tagged ENaC subunits indicated that, unlike α-ENaC, the δ-subunit does not undergo proteolytic maturation by the endogenous protease furin. Furthermore, currents generated by δßγ-ENaC were insensitive to activation by extracellular chymotrypsin, and presence of the δ-subunit prevented cleavage of γ-ENaC at the cell surface. Our findings suggest that subunit composition constitutes an additional level of ENaC regulation, and we propose that the Xenopus δ-ENaC subunit represents a functional example that demonstrates the importance of proteolytic maturation during ENaC evolution.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Membrana Celular/metabolismo , Quimotripsina/metabolismo , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Furina/metabolismo , Oócitos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Proteólise , RNA Mensageiro/genética , Transdução de Sinais , Sistema Urogenital/metabolismo , Xenopus laevis
7.
Cell Mol Life Sci ; 74(9): 1711-1719, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27990576

RESUMO

All olfactory receptors identified in teleost fish are expressed in a single sensory surface, whereas mammalian olfactory receptor gene families segregate into different olfactory organs, chief among them the main olfactory epithelium expressing ORs and TAARs, and the vomeronasal organ expressing V1Rs and V2Rs. A transitional stage is embodied by amphibians, with their vomeronasal organ expressing more 'modern', later diverging V2Rs, whereas more 'ancient', earlier diverging V2Rs are expressed in the main olfactory epithelium. During metamorphosis, the main olfactory epithelium of Xenopus tadpoles transforms into an air-filled cavity (principal cavity, air nose), whereas a newly formed cavity (middle cavity) takes over the function of a water nose. We report here that larval expression of ancient V2Rs is gradually lost from the main olfactory epithelium as it transforms into the air nose. Concomitantly, ancient v2r gene expression begins to appear in the basal layers of the newly forming water nose. We observe the same transition for responses to amino acid odorants, consistent with the hypothesis that amino acid responses may be mediated by V2R receptors.


Assuntos
Aminoácidos/metabolismo , Metamorfose Biológica , Mucosa Nasal/metabolismo , Receptores Odorantes/metabolismo , Órgão Vomeronasal/metabolismo , Água/metabolismo , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Larva/metabolismo , Masculino , Metamorfose Biológica/genética , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Transdução de Sinais , Olfato , Xenopus laevis/metabolismo
8.
Int J Mol Sci ; 19(4)2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642561

RESUMO

While interleukin-1ß (IL-1ß) is a potent pro-inflammatory cytokine essential for host defense, high systemic levels cause life-threatening inflammatory syndromes. ATP, a stimulus of IL-1ß maturation, is released from damaged cells along with ß-nicotinamide adenine dinucleotide (ß-NAD). Here, we tested the hypothesis that ß-NAD controls ATP-signaling and, hence, IL-1ß release. Lipopolysaccharide-primed monocytic U937 cells and primary human mononuclear leukocytes were stimulated with 2'(3')-O-(4-benzoyl-benzoyl)ATP trieethylammonium salt (BzATP), a P2X7 receptor agonist, in the presence or absence of ß-NAD. IL-1ß was measured in cell culture supernatants. The roles of P2Y receptors, nicotinic acetylcholine receptors (nAChRs), and Ca2+-independent phospholipase A2 (iPLA2ß, PLA2G6) were investigated using specific inhibitors and gene-silencing. Exogenous ß-NAD signaled via P2Y receptors and dose-dependently (IC50 = 15 µM) suppressed the BzATP-induced IL-1ß release. Signaling involved iPLA2ß, release of a soluble mediator, and nAChR subunit α9. Patch-clamp experiments revealed that ß-NAD inhibited BzATP-induced ion currents. In conclusion, we describe a novel triple membrane-passing signaling cascade triggered by extracellular ß-NAD that suppresses ATP-induced release of IL-1ß by monocytic cells. This cascade links activation of P2Y receptors to non-canonical metabotropic functions of nAChRs that inhibit P2X7 receptor function. The biomedical relevance of this mechanism might be the control of trauma-associated systemic inflammation.


Assuntos
Interleucina-1beta/metabolismo , Monócitos/metabolismo , NAD/farmacologia , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Lipopolissacarídeos/farmacologia , Antagonistas Nicotínicos/farmacologia , Inibidores de Fosfolipase A2/farmacologia , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptores Purinérgicos P2Y/genética , Receptores Purinérgicos P2Y/metabolismo
9.
J Lipid Res ; 58(6): 1055-1066, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28404637

RESUMO

Interleukin (IL)-1ß is a potent pro-inflammatory cytokine of innate immunity involved in host defense. High systemic IL-1ß levels, however, cause life-threatening inflammatory diseases, including systemic inflammatory response syndrome. In response to various danger signals, the pro-form of IL-1ß is synthesized and stays in the cytoplasm unless a second signal, such as extracellular ATP, activates the inflammasome, which enables processing and release of mature IL-1ß. As pulmonary surfactant is known for its anti-inflammatory properties, we hypothesize that surfactant inhibits ATP-induced release of IL-1ß. Lipopolysaccharide-primed monocytic U937 cells were stimulated with an ATP analog in the presence of natural or synthetic surfactant composed of recombinant surfactant protein (rSP)-C, palmitoylphosphatidylglycerol, and dipalmitoylphosphatidylcholine (DPPC). Both surfactant preparations dose-dependently inhibited IL-1ß release from U937 cells. DPPC was the active constituent of surfactant, whereas rSP-C and palmitoylphosphatidylglycerol were inactive. DPPC was also effective in primary mononuclear leukocytes isolated from human blood. Experiments with nicotinic antagonists, siRNA technology, and patch-clamp experiments suggested that stimulation of nicotinic acetylcholine receptors (nAChRs) containing subunit α9 results in a complete inhibition of the ion channel function of ATP receptor, P2X7. In conclusion, the surfactant constituent, DPPC, efficiently inhibits ATP-induced inflammasome activation and maturation of IL-1ß in human monocytes by a mechanism involving nAChRs.


Assuntos
Trifosfato de Adenosina/farmacologia , Interleucina-1beta/metabolismo , Surfactantes Pulmonares/farmacologia , Receptores Nicotínicos/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/metabolismo , Trifosfato de Adenosina/química , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Subunidades Proteicas/metabolismo , Células U937
12.
Proc Natl Acad Sci U S A ; 110(19): 7714-9, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23613591

RESUMO

Mammalian olfactory receptor families are segregated into different olfactory organs, with type 2 vomeronasal receptor (v2r) genes expressed in a basal layer of the vomeronasal epithelium. In contrast, teleost fish v2r genes are intermingled with all other olfactory receptor genes in a single sensory surface. We report here that, strikingly different from both lineages, the v2r gene family of the amphibian Xenopus laevis is expressed in the main olfactory as well as the vomeronasal epithelium. Interestingly, late diverging v2r genes are expressed exclusively in the vomeronasal epithelium, whereas "ancestral" v2r genes, including the single member of v2r family C, are restricted to the main olfactory epithelium. Moreover, within the main olfactory epithelium, v2r genes are expressed in a basal zone, partially overlapping, but clearly distinct from an apical zone of olfactory marker protein and odorant receptor-expressing cells. These zones are also apparent in the spatial distribution of odor responses, enabling a tentative assignment of odor responses to olfactory receptor gene families. Responses to alcohols, aldehydes, and ketones show an apical localization, consistent with being mediated by odorant receptors, whereas amino acid responses overlap extensively with the basal v2r-expressing zone. The unique bimodal v2r expression pattern in main and accessory olfactory system of amphibians presents an excellent opportunity to study the transition of v2r gene expression during evolution of higher vertebrates.


Assuntos
Regulação da Expressão Gênica , Família Multigênica , Mucosa Olfatória/metabolismo , Receptores de Feromônios/fisiologia , Proteínas de Xenopus/fisiologia , Aminoácidos/metabolismo , Animais , Evolução Biológica , Padronização Corporal , Cálcio/metabolismo , Clonagem Molecular , Dados de Sequência Molecular , Neurônios/metabolismo , Odorantes , Filogenia , Especificidade da Espécie , Xenopus , Xenopus laevis
13.
J Neurosci ; 33(44): 17247-52, 2013 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-24174658

RESUMO

Olfactory receptor neurons extend axons into the olfactory bulb, where they face the challenge to integrate into existing circuitry. The consensus view is that in vertebrates individual receptor neurons project unbranched axons into one specific glomerulus of the olfactory bulb. We report here that, strikingly different from the generally assumed wiring principle in vertebrate olfactory systems, axons of single receptor neurons of Xenopus laevis regularly bifurcate and project into more than one glomerulus. Specifically, the innervation of multiple glomeruli is present in all ontogenetic stages of this species, from the larva to the postmetamorphic frog. Also, we show that this unexpected wiring pattern is not restricted to axons of immature receptor neurons, but that it is also a feature of mature neurons of both the main and accessory olfactory system. This glomerular innervation pattern is unique among vertebrates investigated so far and represents a new olfactory wiring strategy.


Assuntos
Axônios/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Bulbo Olfatório/crescimento & desenvolvimento , Condutos Olfatórios/crescimento & desenvolvimento , Neurônios Receptores Olfatórios/crescimento & desenvolvimento , Animais , Feminino , Masculino , Rede Nervosa/embriologia , Bulbo Olfatório/embriologia , Condutos Olfatórios/embriologia , Neurônios Receptores Olfatórios/embriologia , Xenopus laevis
14.
J Exp Biol ; 217(Pt 13): 2235-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24737764

RESUMO

Complete segregation of the main olfactory epithelium (MOE) and the vomeronasal epithelium is first observed in amphibians. In contrast, teleost fishes possess a single olfactory surface, in which genetic components of the main and vomeronasal olfactory systems are intermingled. The transient receptor potential channel TRPC2, a marker of vomeronasal neurons, is present in the single fish sensory surface, but is already restricted to the vomeronasal epithelium in a terrestrial amphibian, the red-legged salamander (Plethodon shermani). Here we examined the localization of TRPC2 in an aquatic amphibian and cloned the Xenopus laevis trpc2 gene. We show that it is expressed in both the MOE and the vomeronasal epithelium. This is the first description of a broad trpc2 expression in the MOE of a tetrapod. The expression pattern of trpc2 in the MOE is virtually undistinguishable from that of MOE-specific v2rs, indicating that they are co-expressed in the same neuronal subpopulation.


Assuntos
Percepção Olfatória , Canais de Cátion TRPC/genética , Proteínas de Xenopus/genética , Xenopus laevis/fisiologia , Sequência de Aminoácidos , Animais , Larva/genética , Larva/metabolismo , Dados de Sequência Molecular , Mucosa Olfatória/metabolismo , Alinhamento de Sequência , Canais de Cátion TRPC/química , Canais de Cátion TRPC/metabolismo , Distribuição Tecidual , Órgão Vomeronasal/metabolismo , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Xenopus laevis/crescimento & desenvolvimento
15.
Purinergic Signal ; 10(2): 327-36, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24271060

RESUMO

Purinergic signaling has considerable impact on the functioning of the nervous system, including the special senses. Purinergic receptors are expressed in various cell types in the retina, cochlea, taste buds, and the olfactory epithelium. The activation of these receptors by nucleotides, particularly adenosine-5'-triphosphate (ATP) and its breakdown products, has been shown to tune sensory information coding to control the homeostasis and to regulate the cell turnover in these organs. While the purinergic system of the retina, cochlea, and taste buds has been investigated in numerous studies, the available information about purinergic signaling in the olfactory system is rather limited. Using functional calcium imaging, we identified and characterized the purinergic receptors expressed in the vomeronasal organ of larval Xenopus laevis. ATP-evoked activity in supporting and basal cells was not dependent on extracellular Ca(2+). Depletion of intracellular Ca(2+) stores disrupted the responses in both cell types. In addition to ATP, supporting cells responded also to uridine-5'-triphosphate (UTP) and adenosine-5'-O-(3-thiotriphosphate) (ATPγS). The response profile of basal cells was considerably broader. In addition to ATP, they were activated by ADP, 2-MeSATP, 2-MeSADP, ATPγS, UTP, and UDP. Together, our findings suggest that supporting cells express P2Y(2)/P2Y(4)-like purinergic receptors and that basal cells express multiple P2Y receptors. In contrast, vomeronasal receptor neurons were not sensitive to nucleotides, suggesting that they do not express purinergic receptors. Our data provide the basis for further investigations of the physiological role of purinergic signaling in the vomeronasal organ and the olfactory system in general.


Assuntos
Sinalização do Cálcio/fisiologia , Mucosa Olfatória/metabolismo , Receptores Purinérgicos/metabolismo , Órgão Vomeronasal/metabolismo , Animais , Imuno-Histoquímica , Larva , Microscopia Confocal , Xenopus laevis
16.
Cell Mol Life Sci ; 70(11): 1965-84, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23269434

RESUMO

In contrast to the single sensory surface present in teleost fishes, several spatially segregated subsystems with distinct molecular and functional characteristics define the mammalian olfactory system. However, the evolutionary steps of that transition remain unknown. Here we analyzed the olfactory system of an early diverging tetrapod, the amphibian Xenopus laevis, and report for the first time the existence of two odor-processing streams, sharply segregated in the main olfactory bulb and partially segregated in the olfactory epithelium of pre-metamorphic larvae. A lateral odor-processing stream is formed by microvillous receptor neurons and is characterized by amino acid responses and Gαo/Gαi as probable signal transducers, whereas a medial stream formed by ciliated receptor neurons is characterized by responses to alcohols, aldehydes, and ketones, and Gαolf/cAMP as probable signal transducers. To reveal candidates for the olfactory receptors underlying these two streams, the spatial distribution of 12 genes from four olfactory receptor gene families was determined. Several class II and some class I odorant receptors (ORs) mimic the spatial distribution observed for the medial stream, whereas a trace amine-associated receptor closely parallels the spatial pattern of the lateral odor-processing stream. Other olfactory receptors (some class I odorant receptors and vomeronasal type 1 receptors) and odor responses (to bile acids, amines) were not lateralized, the latter not even in the olfactory bulb, suggesting an incomplete segregation. Thus, the olfactory system of X. laevis exhibits an intermediate stage of segregation and as such appears well suited to investigate the molecular driving forces behind olfactory regionalization.


Assuntos
Odorantes , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Olfato/fisiologia , Aminoácidos/química , Animais , Sinalização do Cálcio , Proteínas de Ligação ao GTP/análise , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Imuno-Histoquímica , Nariz/fisiologia , Bulbo Olfatório/anatomia & histologia , Mucosa Olfatória/metabolismo , Mucosa Olfatória/fisiologia , Condutos Olfatórios/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Transdução de Sinais , Olfato/genética , Xenopus laevis
17.
Dev Neurobiol ; 84(2): 59-73, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38439531

RESUMO

In contrast to other S100 protein members, the function of S100 calcium-binding protein Z (S100Z) remains largely uncharacterized. It is expressed in the olfactory epithelium of fish, and it is closely associated with the vomeronasal organ (VNO) in mammals. In this study, we analyzed the expression pattern of S100Z in the olfactory system of the anuran amphibian Xenopus laevis. Using immunohistochemistry in whole mount and slice preparations of the larval olfactory system, we found exclusive S100Z expression in a subpopulation of olfactory receptor neurons (ORNs) of the main olfactory epithelium (MOE). S100Z expression was not co-localized with TP63 and cytokeratin type II, ruling out basal cell and supporting cell identity. The distribution of S100Z-expressing ORNs was laterally biased, and their average number was significantly increased in the lateral half of the olfactory epithelium. The axons of S100Z-positive neurons projected exclusively into the lateral and intermediate glomerular clusters of the main olfactory bulb (OB). Even after metamorphic restructuring of the olfactory system, S100Z expression was restricted to a neuronal subpopulation of the MOE, which was then located in the newly formed middle cavity. An axonal projection into the ventro-lateral OB persisted also in postmetamorphic frogs. In summary, S100Z is exclusively associated with the main olfactory system in the amphibian Xenopus and not with the VNO as in mammals, despite the presence of a separate accessory olfactory system in both classes.


Assuntos
Neurônios Receptores Olfatórios , Proteínas S100 , Órgão Vomeronasal , Animais , Bulbo Olfatório/metabolismo , Mucosa Olfatória , Neurônios Receptores Olfatórios/metabolismo , Proteínas S100/metabolismo , Órgão Vomeronasal/metabolismo , Xenopus laevis/metabolismo
18.
iScience ; 26(9): 107518, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636047

RESUMO

Glomeruli are the functional units of the vertebrate olfactory bulb (OB) connecting olfactory receptor neuron (ORN) axons and mitral/tufted cell (MTC) dendrites. In amphibians, these two circuit elements regularly branch and innervate multiple, spatially distinct glomeruli. Using functional multiphoton-microscopy and single-cell tracing, we investigate the impact of this wiring on glomerular module organization and odor representations on multiple levels of the Xenopus laevis OB network. The glomerular odor map to amino acid odorants is neither stereotypic between animals nor chemotopically organized. Among the morphologically heterogeneous group of uni- and multi-glomerular MTCs, MTCs can selectively innervate glomeruli formed by axonal branches of individual ORNs. We conclude that odor map heterogeneity is caused by the coexistence of different intermingled glomerular modules. This demonstrates that organization of the amphibian main olfactory system is not strictly based on uni-glomerular connectivity.

19.
Front Immunol ; 14: 1140592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969210

RESUMO

Objective: The pro-inflammatory cytokine interleukin-1ß (IL-1ß) plays a central role in host defense against infections. High systemic IL-1ß levels, however, promote the pathogenesis of inflammatory disorders. Therefore, mechanisms controlling IL-1ß release are of substantial clinical interest. Recently, we identified a cholinergic mechanism inhibiting the ATP-mediated IL-1ß release by human monocytes via nicotinic acetylcholine receptor (nAChR) subunits α7, α9 and/or α10. We also discovered novel nAChR agonists that trigger this inhibitory function in monocytic cells without eliciting ionotropic functions at conventional nAChRs. Here, we investigate the ion flux-independent signaling pathway that links nAChR activation to the inhibition of the ATP-sensitive P2X7 receptor (P2X7R). Methods: Different human and murine mononuclear phagocytes were primed with lipopolysaccharide and stimulated with the P2X7R agonist BzATP in the presence or absence of nAChR agonists, endothelial NO synthase (eNOS) inhibitors, and NO donors. IL-1ß was measured in cell culture supernatants. Patch-clamp and intracellular Ca2+ imaging experiments were performed on HEK cells overexpressing human P2X7R or P2X7R with point mutations at cysteine residues in the cytoplasmic C-terminal domain. Results: The inhibitory effect of nAChR agonists on the BzATP-induced IL-1ß release was reversed in the presence of eNOS inhibitors (L-NIO, L-NAME) as well as in U937 cells after silencing of eNOS expression. In peripheral blood mononuclear leukocytes from eNOS gene-deficient mice, the inhibitory effect of nAChR agonists was absent, suggesting that nAChRs signal via eNOS to inhibit the BzATP-induced IL-1ß release. Moreover, NO donors (SNAP, S-nitroso-N-acetyl-DL-penicillamine; SIN-1) inhibited the BzATP-induced IL-1ß release by mononuclear phagocytes. The BzATP-induced ionotropic activity of the P2X7R was abolished in the presence of SIN-1 in both, Xenopus laevis oocytes and HEK cells over-expressing the human P2X7R. This inhibitory effect of SIN-1 was absent in HEK cells expressing P2X7R, in which C377 was mutated to alanine, indicating the importance of C377 for the regulation of the P2X7R function by protein modification. Conclusion: We provide first evidence that ion flux-independent, metabotropic signaling of monocytic nAChRs involves eNOS activation and P2X7R modification, resulting in an inhibition of ATP signaling and ATP-mediated IL-1ß release. This signaling pathway might be an interesting target for the treatment of inflammatory disorders.


Assuntos
Leucócitos Mononucleares , Receptores Purinérgicos P2X7 , Humanos , Camundongos , Animais , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Monócitos/metabolismo , Trifosfato de Adenosina/metabolismo , Óxido Nítrico Sintase/metabolismo
20.
Front Neuroanat ; 16: 914281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873659

RESUMO

Microtubules are essential components of the cytoskeleton of all eukaryotic cells and consist of α- and ß-tubulin heterodimers. Several tissue-specific isotypes of α- and ß-tubulins, encoded by distinct genes, have been described in vertebrates. In the African clawed frog (Xenopus laevis), class II ß-tubulin (tubb2b) is expressed exclusively in neurons, and its promoter is used to establish different transgenic frog lines. However, a thorough investigation of the expression pattern of tubb2b has not been carried out yet. In this study, we describe the expression of tubb2b-dependent Katushka fluorescence in the forebrain of premetamorphic Xenopus laevis at cellular resolution. To determine the exact location of Katushka-positive neurons in the forebrain nuclei and to verify the extent of neuronal Katushka expression, we used a transgenic frog line and performed several additional antibody stainings. We found tubb2b-dependent fluorescence throughout the Xenopus forebrain, but not in all neurons. In the olfactory bulb, tubb2b-dependent fluorescence is present in axonal projections from the olfactory epithelium, cells in the mitral cell layer, and fibers of the extrabulbar system, but not in interneurons. We also detected tubb2b-dependent fluorescence in parts of the basal ganglia, the amygdaloid complex, the pallium, the optic nerve, the preoptic area, and the hypothalamus. In the diencephalon, tubb2b-dependent fluorescence occurred mainly in the prethalamus and thalamus. As in the olfactory system, not all neurons of these forebrain regions exhibited tubb2b-dependent fluorescence. Together, our results present a detailed overview of the distribution of tubb2b-dependent fluorescence in neurons of the forebrain of larval Xenopus laevis and clearly show that tubb2b-dependent fluorescence cannot be used as a pan-neuronal marker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA