Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 99(3): 1267-1274, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30073655

RESUMO

BACKGROUND: Coffee is one of the most popular beverages in the world. However, as daily consumables, coffee beans may contain pesticide residues that are capable of causing adverse health effects. Thus, we investigated residue dynamics in coffee beans using supervised field trials under Good Agricultural Practice conditions and determined the effects of household coffee processing on the coffee-bean pesticide residues dinotefuran and its metabolites 1-methyl-3-(tetrahydro-3-furylmethyl) urea (UF) and 1-methyl-3-(tetrahydro-3-furylmethyl) guanidine (DN). RESULTS: The recovery rate of dinotefuran and its metabolites UF and DN was in the range 73.5%-106.3%, with a relative SD < 10%. The limits of detection and limits of quantification for dinotefuran, UF and DN were all 0.003 and 0.01 mg kg-1 , respectively. Dissipation experiments were conducted over 2015 and 2016 and showed a mean half-life of 40.8 days. Coffee processing procedures were performed as described for traditional household coffee processing in Ethiopia. Dinotefuran contents were reduced by 44.4%-86.7% with washing of coffee beans and the roasting process reduced these contents by 62.2%-100%. DN residues were not detected in roasted coffee beans before day 21 or in brewed coffee before day 35 and UF residues were not detected in brewed coffee before day 35. Kruskal-Wallis analyses indicated large variations in the stability of pesticide residues between processing methods (P ≤ 0.05). Reductions of pesticide concentrations with washing were also significantly lower than those following roasting (P = 0.0001) and brewing processes (P = 0.002). Moreover, processing factors were less than one for all processing stages, indicating reductions of pesticides contents for all processing stages. CONCLUSION: The cumulative effects of the three processing methods are of paramount importance with respect to an evaluation of the risks associated with the ingestion of pesticide residues, particularly those in coffee beans. © 2018 Society of Chemical Industry.


Assuntos
Coffea/química , Guanidinas/química , Neonicotinoides/química , Nitrocompostos/química , Resíduos de Praguicidas/química , Cromatografia Líquida , Coffea/metabolismo , Café/química , Café/metabolismo , Etiópia , Contaminação de Alimentos/análise , Manipulação de Alimentos , Guanidinas/isolamento & purificação , Guanidinas/metabolismo , Neonicotinoides/isolamento & purificação , Neonicotinoides/metabolismo , Nitrocompostos/isolamento & purificação , Nitrocompostos/metabolismo , Resíduos de Praguicidas/isolamento & purificação , Resíduos de Praguicidas/metabolismo , Sementes/química , Sementes/metabolismo , Extração em Fase Sólida , Espectrometria de Massas em Tandem
2.
Plants (Basel) ; 11(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145817

RESUMO

Sugarcane is an important crop across the globe, and the rapid multiplication of excellent cultivars is an important object of the sugarcane industry. As one of the plant growth regulators, paclobutrazol (PBZ) has been frequently used in the tissue culture of sugarcane seedlings. However, little is known about the molecular mechanisms of response to PBZ in this crop. Here, we performed a comparative transcriptome analysis between sensitive (LC05-136) and non-sensitive (GGZ001) sugarcane cultivars treated by PBZ at three time points (0 d, 10 d, and 30 d) using RNA sequencing (RNA-Seq). The results showed that approximately 70.36 Mb of clean data for each sample were generated and assembled into 239,212 unigenes. A total of 6108 and 4404 differentially expressed genes (DEGs) were identified within the sensitive and non-sensitive sugarcane cultivars, respectively. Among them, DEGs in LC05-136 were most significantly enriched in the photosynthesis and valine, leucine and isoleucine degradation pathways, while in GGZ001, DEGs associated with ion channels and plant-pathogen interaction were mainly observed. Notably, many interesting genes, including those encoding putative regulators, key components of photosynthesis, amino acids degradation and glutamatergic synapse, were identified, revealing their importance in the response of sugarcane to PBZ. Furthermore, the expressions of sixteen selected DEGs were tested by quantitative reverse transcription PCR (RT-qPCR), confirming the reliability of the RNA-seq data used in this study. These results provide valuable information regarding the transcriptome changes in sugarcane treated by PBZ and provide an insight into understanding the molecular mechanisms underlying the resistance to PBZ in sugarcane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA