Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Molecules ; 27(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431859

RESUMO

Toad venom, a dried product of secretion from Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider, has had the therapeutic effects of hepatocellular carcinoma confirmed. Bufalin and cinobufagin were considered as the two most representative antitumor active components in toad venom. However, the underlying mechanisms of this antitumor effect have not been fully implemented, especially the changes in endogenous small molecules after treatment. Therefore, this study was designed to explore the intrinsic mechanism on hepatocellular carcinoma after the cotreatment of bufalin and cinobufagin based on untargeted tumor metabolomics. Ultraperformance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) was performed to identify the absorbed components of toad venom in rat plasma. In vitro experiments were determined to evaluate the therapeutic effects of bufalin and cinobufagin and screen the optimal ratio between them. An in vivo HepG2 tumor-bearing nude mice model was established, and a series of pharmacodynamic indicators were determined, including the body weight of mice, tumor volume, tumor weight, and histopathological examination of tumor. Further, the entire metabolic alterations in tumor after treating with bufalin and cinobufagin were also profiled by UHPLC-MS/MS. Twenty-seven active components from toad venom were absorbed in rat plasma. We found that the cotreatment of bufalin and cinobufagin exerted significant antitumor effects both in vitro and in vivo, which were reflected in inhibiting proliferation and inducing apoptosis of HepG2 cells and thereby causing cell necrosis. After cotherapy of bufalin and cinobufagin for twenty days, compared with the normal group, fifty-six endogenous metabolites were obviously changed on HepG2 tumor-bearing nude mice. Meanwhile, the abundance of α-linolenic acid and phenethylamine after the bufalin and cinobufagin intervention was significantly upregulated, which involved phenylalanine metabolism and α-linolenic acid metabolism. Furthermore, we noticed that amino acid metabolites were also altered in HepG2 tumor after drug intervention, such as norvaline and Leu-Ala. Taken together, the cotreatment of bufalin and cinobufagin has significant antitumor effects on HepG2 tumor-bearing nude mice. Our work demonstrated that the in-depth mechanism of antitumor activity was mainly through the regulation of phenylalanine metabolism and α-Linolenic acid metabolism.


Assuntos
Venenos de Anfíbios , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Camundongos Nus , Espectrometria de Massas em Tandem , Ácido alfa-Linolênico , Neoplasias Hepáticas/tratamento farmacológico , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/química , Bufonidae , Fenilalanina
2.
J Ethnopharmacol ; 319(Pt 3): 117282, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37802374

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cisplatin (CP) results in acute kidney injury (AKI) and negatively affects patients' therapy and survival. The dried rhizome of Gastrodia elata Blume has been used to treat clinical kidney diseases. Gastrodin (GAS) is an active ingredient of the G. elata tuber. It is unknown whether GAS can alleviate CP-induced AKI. AIM OF THE STUDY: This study aimed to investigate whether GAS, an active ingredient of G. elata Blume, can alleviate CP-induced AKI and to explore its underlying mechanisms. MATERIALS AND METHODS: Experiments were conducted with a CP-induced AKI mouse model and an immortalized human renal tubular epithelial cell line (HK-2). Serum creatinine, Periodic acid-Schiff staining, tissue iron, glutathione, malondialdehyde, and 4-Hydroxynonenal were detected in serum and kidney samples to observe whether GAS inhibits CP-induced tubule ferroptosis. The drug target was verified by detecting the effects of GAS on sirtuin-1 (SIRT1) activity in vitro. Transcriptional regulation of glutathione peroxidase 4 (GPX4) by forkhead box O3A (FOXO3A) was verified by siRNA knockdown, overexpression, and chromatin immunoprecipitation. The effects of FOXO3A, SIRT1, and GAS on CP-induced ferroptosis were measured with propidium iodide, dihydroethidium, monobromobimane, and dipyrromethene boron difluoride staining in HK-2 cells. The relationship between GAS and the SIRT1/FOXO3A/GPX4 pathway was studied using Western blotting. RESULTS: GAS treatment inhibited CP-induced reactive oxygen species, lipid peroxidation, and tubule death in the cell and animal models. GAS activated SIRT1 in vitro. The SIRT1 inhibitor blocked the protective role of GAS in reducing lipid peroxidation in HK-2 cells. FOXO3A transcriptionally regulated GPX4 expression and inhibited CP-induced cell ferroptosis. Compared to CP-damaged mouse kidneys, GAS-treated mice demonstrated significantly increased SIRT1 and GPX4 expression levels, decreased CP-induced acetylation of FOXO3A, and inhibited lipid peroxidation and cell death. CONCLUSIONS: GAS alleviated CP-induced AKI by inhibiting ferroptosis via the SIRT1/FOXO3A/GPX4 signaling pathway. The results offer new insights into the development of new anti-AKI drugs from traditional Chinese medicine.


Assuntos
Injúria Renal Aguda , Ferroptose , Sirtuínas , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Sirtuína 1/metabolismo , Sirtuínas/metabolismo , Linhagem Celular , Transdução de Sinais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo
3.
Braz J Med Biol Res ; 57: e13388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38958365

RESUMO

Jiawei Xinglou Chengqi Granule (JXCG) is an effective herbal medicine for the treatment of ischemic stroke (IS). JXCG has been shown to effectively ameliorate cerebral ischemic symptoms in clinical practice, but the underlying mechanisms are unclear. In this study, we investigated the mechanisms of action of JXCG in the treatment of IS by combining metabolomics with network pharmacology. The chemical composition of JXCG was analyzed using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Ultra-high performance liquid chromatography-tandem time-of-flight mass spectrometry (UHPLC-Q-TOF MS) untargeted metabolomics were used to identify differential metabolites within metabolic pathways. Network pharmacology was applied to mine potential targets of JXCG in the treatment of IS. The identified key targets were validated by constructing an integrated network of metabolomics and network pharmacology and by molecular docking using Cytoscape. The effect of JXCG on IS was evaluated in vivo, and the predicted targets and pathways of JXCG in IS therapy were assessed using immunoblotting. Combining metabolomics and network pharmacology, we identified the therapeutic targets of JXCG for IS. Notably, JXCG lessened neuronal damage and reduced cerebral infarct size in rats with IS. Western blot analysis showed that JXCG upregulated PRKCH and downregulated PRKCE and PRKCQ proteins. Our combined network pharmacology and metabolomics findings showed that JXCG may have therapeutic potential in the treatment of IS by targeting multiple factors and pathways.


Assuntos
Medicamentos de Ervas Chinesas , AVC Isquêmico , Metabolômica , Farmacologia em Rede , Animais , Medicamentos de Ervas Chinesas/farmacologia , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Masculino , Ratos , Cromatografia Líquida de Alta Pressão , Ratos Sprague-Dawley , Modelos Animais de Doenças , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
4.
Heliyon ; 10(1): e23077, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163129

RESUMO

Context: Cardiomyocyte hypertrophy due to hemodynamic overload eventually leads to heart failure. Hirudin has been widely used in the treatment of cardiovascular diseases and NLRP3 inflammasome was proven to induce cardiomyocyte pyroptosis. However, the mechanism by which it inhibits cardiomyocyte hypertrophy remains unclear. Objective: To explore the mechanism of hirudin inhibiting cardiomyocyte hypertrophy based on NLRP3 inflammasome activation and mitophagy. Materials & methods: 1 µM AngII was used for cardiac hypertrophy modeling in H9C2 cells, and cell viability was quantified by CCK-8 assay to screen the appropriate action concentrations of hirudin. After that, we cultured AngII induced-H9C2 cells for 24 h with 0, 0.3, 0.6, and 1.2 mM hirudin, respectively. Next, we marked H9C2 cells with phalloidine and observed them using fluorescence microscope. IL-1ß, IL-18, IL-6, TNF-α, ANP, BNP, ß-MHC, and mtDNA were analyzed by qRT-PCR; ROS were quantified by Flow cytometry; SOD, MDA, and GSH-Px were detected by ELISA; and proteins including NLRP3, ASC, caspase-1, pro-caspase-1, IL-1ß, IL-18, PINK-1, Parkin, beclin-1, LC3-Ⅰ, LC3-Ⅱ, p62, were quantified by western blotting. Results: It was discovered that hirudin reduced the superficial area of AngII-induced H9C2 cells and inhibited the AngII-induced up-regulation of ANP, BNP, and ß-MHC. Besides, hirudin down-regulated the expressions of NLRP3 inflammasome-related cytokines, containing IL-1ß, IL-18, IL-6, TNF-α. It also down-regulated the expression of mtDNA and ROS, decreased the expression levels of NLRP3 inflammasome activation related proteins, including NLRP3, ASC, caspase-1, pro-caspase-1, IL-1ß, IL-18; and increased the expressions of PINK-1, Parkin, beclin-1, LC3-Ⅱ/LC3-Ⅰ, p62 in AngII-induced H9C2 cells. Discussion: Hirudin promoted the process of mitophagy, inhibited the development of inflammation and oxidative stress, and inhibited the activation of the NLRP3 inflammasome and the PINK-1/Parkin pathway. Conclusion: Hirudin has the activity to suppress cardiac hypertrophy may benefit from the inhibition of NLRP3 inflammasome and activating of PINK-1/Parkin related-mitophagy.

5.
Life Sci ; 355: 122998, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39173998

RESUMO

Myocardial ischemia-reperfusion injury (MIRI) is an injury to cardiomyocytes due to restoration of blood flow after myocardial infarction (MI). It has recently gained much attention in clinical research with special emphasis on the roles of mitochondrial autophagy and inflammation. A mild inflammatory response promotes recovery of post-ischemic cardiomyocyte function and vascular regeneration, but a severe inflammatory response can cause irreversible and substantial cellular damage. Similarly, moderate mitochondrial autophagy can help inhibit excessive inflammation and protect cardiomyocytes. However, MIRI is aggravated when mitochondrial function is disrupted, such as inadequate clearance of damaged mitochondria or excessive activation of mitophagy. How to moderately control mitochondrial autophagy while promoting its balance with nucleotide-binding oligomerization structural domain receptor protein 3 (NLRP3) inflammasome activation is critical. In this paper, we reviewed the molecular mechanisms of mitochondrial autophagy and NLRP3 inflammasome, described the interaction between NLRP3 inflammasome and mitochondrial autophagy, and the effects of different signaling pathways and molecular proteins on MIRI, to provide a reference for future research.


Assuntos
Inflamassomos , Mitofagia , Traumatismo por Reperfusão Miocárdica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Inflamassomos/metabolismo , Animais , Transdução de Sinais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia
6.
J Tradit Complement Med ; 14(1): 40-54, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223805

RESUMO

Background and aim: Zhilong Huoxue Tongyu (ZL) capsule is a classical traditional Chinese medicine (TCM) with satisfactory curative effects. Endothelial cell (EC) dysfunction plays an important role during myocardial fibrosis (MF). But the therapeutic effect of ZL capsule on EC dysfunction remains unknown in the development of MF. This study aims to investigate the effect of ZL capsule on EC dysfunction during MF in vivo. Experimental procedure: The model of MF is established in vivo by injecting isoproterenol for 14 days, simultaneously, we examined the therapeutic effect of ZL capsule on MF in vivo. An integrative approach combining biomarker examination, echocardiography and myocardial fibrosis condition using Hematoxylin-eosin staining, Masson staining, and Sirius red staining were performed to assess the efficacy of ZL capsule against MF. Subsequently, comprehensive immunofluorescence staining was performed to evaluate the therapeutic effect of ZL capsule on EC dysfunction. Results and conclusion: Prior to experiments, analysis of the published single-cell sequencing data was performed and it was discovered that EC dysfunction plays an important role. Further pharmacological results showed that ZL capsule could alleviate fibrosis injury and collagen fiber deposition. The mechanism investigation results showed that the endothelial-to-mesenchymal transition (EndMT) and MHC class-II (MHC-II) expression in EC were improved. In addition, ZL capsule can attenuate the inflammatory response during MF by intervening the activation of CD4+T cell mediated by EC. For the first time, we provided evidence that ZL capsule could improve MF by alleviating EC dysfunction via the regulation of EndMT and expression of MHC-II. Taxonomy classification by evise: Myocardial fibrosis, Chinese Herbal Medicine, Traditional Medicine, Endothelium, dysfunction, Endothelial-to-mesenchymal transition.

7.
Artigo em Inglês | MEDLINE | ID: mdl-36199551

RESUMO

Objective: The purpose of this study is to explore the mechanism of the Zhilong Huoxue Tongyu (ZL) capsule in the treatment of intracerebral hemorrhage (ICH) via targeting ferroptosis based on network pharmacology. Methods: The active ingredients and related key targets of the ZL capsule were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were also performed. Finally, identified targets were validated in an in-vivo model of ICH. Results: A total of 30 active ingredients and 33 intersecting targets were identified through a TCMSP database search. Ingredients-Targets-Pathways network was constructed to filter out the key targets according to the degree value. TP53 was selected as the key target. The in-vivo validation studies demonstrated that TP53 was down-regulated and GPX4 was upregulated in rats following ZL capsule treatment. Conclusions: It is concluded that the ZL capsule could alleviate ICH in a muti-target and multi-pathway manner. ZL capsule could alleviate ICH by inhibiting ferroptosis, and TP53 is identified to be the potential target. Further research is needed to clarify the detailed anti-ferroptotic mechanism of the ZL capsule.

8.
Comput Math Methods Med ; 2022: 3900828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615438

RESUMO

Background: Stable angina pectoris (SAP) is one of the main types of coronary heart disease (CHD). To improve treatment outcomes, more effective biomarkers are needed. Currently, studies on the metabolic characteristics of SAP are lacking. Here, we explored the serum metabolomic profile of SAP and identified potential biomarkers and related pathways to assist the clinical diagnosis and treatment of SAP. Method: Thirty patients with SAP patients and 30 healthy controls (CON) without stenosis were selected for this study. All patients underwent coronary angiography. The metabolites of the two groups' serum samples were investigated using UHPLC-QE-MS. Changes in serum metabolic profile were evaluated using multivariate statistical analysis and pathway analysis. Result: OPLS-DA analysis identified significant differences in the serum metabolic profiles between patients with SAP and CON. Twenty-five differential metabolites were identified between patients from SAP and CON groups, including choline, creatine, L-arginine, beta-guanidinopropionic acid, isopalmitic acid, xanthine, LysoPC (18 : 1), and LysoPC (20 : 3). Pathway analysis found that these differential metabolites were involved in energy metabolism, oxidative stress, purine metabolism, and other metabolic pathways. Conclusion: By comparing the serum metabolic profiles of SAP patients with a control group, we identified 25 potential biomarkers that could improve the clinical diagnosis and treatment of SAP.


Assuntos
Angina Estável , Angina Estável/diagnóstico por imagem , Biomarcadores , Cromatografia Líquida de Alta Pressão , Humanos , Metaboloma , Metabolômica
9.
Front Pharmacol ; 13: 850060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431931

RESUMO

Background: Intracerebral hemorrhage (ICH) is a debilitating and fatal condition with continuously rising incidence globally, without effective treatment available. Zhilong Huoxue Tongyu (ZLHXTY) capsule is a traditional Chinese medicine that is used for ICH treatment in China. However, the evidence based mechanism is not clear. Purpose: To study the protective effects of ZLHXTY capsules against ICH pathogenesis via targetting nuclear factor kappa ß (NFкß) canonical signalling pathway. Methods: C57BL/6 J mice ICH models using autologous blood injection were used to study the effect of ZLHXTY (1.4 g/kg P.O.) after 24 and 72 hrs of ICH induction. The neurological scoring, corner turn test and balance beam with scoring was performed to assess neurological damage. Hematoxylin/eosin and nissl staining was used for histopathological evaluation. Levels of TNFα, NFкB, iNOS, COX2, IL1, IL6 were measured using real time qPCR and western blotting. Protein levels of IKKß and IкBα were analyzed through western blotting. Immunofluorescence for co-expression of NeuN/TNFα, NeuN/NFкB, Iba1/TNFα, and Iba1/NFкB was also performed. Results: Treatment with ZLHXTY capsules after ICH ameliorated inflammatory brain injury after 24 and 72 h; revealed by neurological scoring, hematoxylin/eosin and nissl staining. The qPCR and western blot analyses demonstrated significant downregulation of TNFα, NFкB, iNOS, COX2, IL1ß and IL6. Further, the IKKß and IкBα revealed significant downregulation and upregulation respectively in western blot. Immunofluorescence also revealed attenuated expression of TNFα and NFкB in neurons and also low expression of Iba1. Conclusion: ZLHXTY capsules elicit its neuroprotective effect by targetting the NFÐºß canonical signalling pathway, thereby ameliorating the ICH induced brain injury.

10.
J Ethnopharmacol ; 277: 114234, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044079

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiovascular and cerebrovascular diseases have become a severe threat for human health worldwide, however, optimal therapeutic options are still developed. Zhilong Huoxue Tongyu capsule (ZL capsule) is mainly composed of Astragalus membranaceus, Leech, Earthworm, Cinnamomum cassia and Sargentodoxa cuneata, having functions of replenishing qi and activating blood, dispelling wind and reducing phlegm. It is an expanded application on the basis of traditional uses of above TCMs, acquiring a satisfactory curative effect on cardiovascular and cerebrovascular diseases over twenty years. AIM OF THE STUDY: To comprehensively summarize the main components of ZL capsule, understand the mechanisms of ZL capsule, and conclude clinical regimens of ZL capsule for cardiovascular and cerebrovascular diseases. MATERIALS AND METHODS: We selected network pharmacology technology to analyze main active compounds and predict underlying mechanism of ZL capsule against atherosclerosis. Molecular docking was performed to simulate the interaction pattern between the active components of ZL capsule and putative targets. Further, PubMed, Web of Science, China National Knowledge Infrastructure and Google Scholar were used to search literatures, with the key words of "Zhilong Huoxue Tongyu capsule", "cardiovascular and cerebrovascular diseases", "atherosclerosis", "clinical study" and their combinations, mainly from 2000 to 2020. RESULTS: Both network pharmacology analysis, molecular docking and animal experiments studies confirmed that mechanisms of ZL capsule plays the role of anti-inflammatory, anti-apoptosis and promoting angiogenesis in treating cardiovascular and cerebrovascular diseases by multi-components acting on multi-targets via multi-pathways. Over 1000 clinical cases were benefited from the treatment of ZL capsule, suggesting a holistic concept of "the same therapy for different myocardial and cerebral diseases". CONCLUSIONS: For the first time, this systematic review may supply meaningful information for further studies to explore material basis and pharmacodynamics of ZL capsule and also provide a basis for sharing the "Chinese patent medicine" for cardiovascular and cerebrovascular diseases.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Transtornos Cerebrovasculares/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Animais , Doenças Cardiovasculares/fisiopatologia , Transtornos Cerebrovasculares/fisiopatologia , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Medicina Tradicional Chinesa/métodos , Simulação de Acoplamento Molecular
11.
Pharmaceutics ; 13(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34959351

RESUMO

Liposomes are attractive carriers for targeted and controlled drug delivery receiving increasing attention in cancer photothermal therapy. However, the field of creating near-infrared nanomaterial-liposome hybrid nanocarriers (NIRN-Lips) is relatively little understood. The hybrid nanocarriers combine the dual superiority of nanomaterials and liposomes, with more stable particles, enhanced photoluminescence, higher tumor permeability, better tumor-targeted drug delivery, stimulus-responsive drug release, and thus exhibiting better anti-tumor efficacy. Herein, this review covers the liposomes supported various types of near-infrared nanomaterials, including gold-based nanomaterials, carbon-based nanomaterials, and semiconductor quantum dots. Specifically, the NIRN-Lips are described in terms of their feature, synthesis, and drug-release mechanism. The design considerations of NIRN-Lips are highlighted. Further, we briefly introduced the photothermal conversion mechanism of NIRNs and the cell death mechanism induced by photothermal therapy. Subsequently, we provided a brief conclusion of NIRNs-Lips applied in cancer photothermal therapy. Finally, we discussed a synopsis of associated challenges and future perspectives for the applications of NIRN-Lips in cancer photothermal therapy.

12.
Braz. j. med. biol. res ; 57: e13388, fev.2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1564158

RESUMO

Jiawei Xinglou Chengqi Granule (JXCG) is an effective herbal medicine for the treatment of ischemic stroke (IS). JXCG has been shown to effectively ameliorate cerebral ischemic symptoms in clinical practice, but the underlying mechanisms are unclear. In this study, we investigated the mechanisms of action of JXCG in the treatment of IS by combining metabolomics with network pharmacology. The chemical composition of JXCG was analyzed using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Ultra-high performance liquid chromatography-tandem time-of-flight mass spectrometry (UHPLC-Q-TOF MS) untargeted metabolomics were used to identify differential metabolites within metabolic pathways. Network pharmacology was applied to mine potential targets of JXCG in the treatment of IS. The identified key targets were validated by constructing an integrated network of metabolomics and network pharmacology and by molecular docking using Cytoscape. The effect of JXCG on IS was evaluated in vivo, and the predicted targets and pathways of JXCG in IS therapy were assessed using immunoblotting. Combining metabolomics and network pharmacology, we identified the therapeutic targets of JXCG for IS. Notably, JXCG lessened neuronal damage and reduced cerebral infarct size in rats with IS. Western blot analysis showed that JXCG upregulated PRKCH and downregulated PRKCE and PRKCQ proteins. Our combined network pharmacology and metabolomics findings showed that JXCG may have therapeutic potential in the treatment of IS by targeting multiple factors and pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA