Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Behav Immun ; 81: 198-212, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31212008

RESUMO

Puberty/adolescence is a significant period of development and a time with a high emergence of psychiatric disorders. During this period, there is increased neuroplasticity and heightened vulnerability to stress and inflammation. The gut microbiome regulates stress and inflammatory responses and can alter brain chemistry and behaviour. However, the role of the gut microbiota during pubertal development remains largely uninvestigated. The current study examined gut manipulation with probiotics during puberty in CD1 mice on lipopolysaccharide (LPS)-induced immune responses and enduring effects on anxiety- and depression-like behaviours and stress-reactivity in adulthood. Probiotics reduced LPS-induced sickness behaviour at 12 h in females and at 48 h following LPS treatment in males. Probiotics also reduced LPS-induced changes in body weight at 48 h post-treatment in females. Probiotic treatment also prevented LPS-induced increases in pro- and anti-inflammatory peripheral cytokines at 8 h following LPS treatment, reduced central cytokine mRNA expression in the hypothalamus, hippocampus and PFC, and prevented LPS-induced changes to in the gut microbiota. A single exposure to LPS during puberty resulted in enduring depression-like behaviour in female mice, and anxiety-like behaviour in male mice in adulthood. However, pubertal exposure to probiotics prevented enduring LPS-induced depression-like behaviour in females and anxiety-like behaviors in males. Moreover, probiotics altered toll-like receptor-4 activity in the paraventricular nucleus of the hypothalamus (PVN) in males in response to a novel stressor in adulthood. Our results suggest that the gut microbiome plays an important role in pubertal neurodevelopment. These findings indicate that exposure to probiotics during puberty mitigates inflammation and decreases stress-induced vulnerabilities to emotional behaviours later in life, in a sex-specific manner.


Assuntos
Microbioma Gastrointestinal/fisiologia , Probióticos/farmacologia , Maturidade Sexual/efeitos dos fármacos , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/metabolismo , Comportamento Animal/fisiologia , Citocinas/metabolismo , Depressão/tratamento farmacológico , Depressão/metabolismo , Transtorno Depressivo/tratamento farmacológico , Transtorno Depressivo/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Comportamento de Doença/efeitos dos fármacos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Fatores Sexuais
2.
Behav Brain Res ; 463: 114919, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408521

RESUMO

Alzheimer's disease (AD) is a severe neurodegenerative disorder and the most common form of dementia in elderly individuals, characterized by memory deficits, cognitive decline, and neuropathology. The identification of preclinical markers for AD remains elusive. We employed an ultrasound-evoked spatial memory assay to investigate path integration (PI) in wild type C57BL/6 J and 5xFAD mice. We observed significant recruitment of the mammillary bodies (MB) and subiculum (Sub) - core regions of the Papez circuit during PI, as indicated by increased expression of the immediate early gene c-Fos in C57BL/6 J mice. In 5xFAD mice, amyloid-beta (Aß) vulnerability in the MB and Sub was evident at 3-months of age, preceding widespread pathology at 5-months of age. In parallel, we detected significant behavioral deficits in PI in the 5XFAD mice at 5- but not 3-months of age. Sex based analysis revealed a more profound deficit in males compared to females at 5-months of age. Our data suggest PI may be as an early indicator of AD, potentially associated with dysfunction within the Papez circuit.


Assuntos
Doença de Alzheimer , Encéfalo , Humanos , Masculino , Feminino , Camundongos , Animais , Idoso , Lactente , Camundongos Transgênicos , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA