Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Environ ; 42(6): 1832-1846, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30802973

RESUMO

Rice is unique among cereals for its ability to germinate not only when submerged but also under anoxic conditions. Rice germination under submergence or anoxia is characterized by a longer coleoptile and delay in radicle emergence. A panel of temperate and tropical japonica rice accessions showing a large variability in coleoptile length was used to investigate genetic factors involved in this developmental process. The ability of the Khao Hlan On rice landrace to vigorously germinate when submerged has been previously associated with the presence of the trehalose 6 phosphate phosphatase 7 (TPP7) gene. In this study, we found that, in the presence of TPP7, polymorphisms and transcriptional variations of the gene in coleoptile tissue were not related to differences in the final coleoptile length under submergence. In order to find new chromosomal regions associated with the different ability of rice to elongate the coleoptile under submergence, we used genome-wide association study analysis on a panel of 273 japonica rice accessions. We discovered 11 significant marker-trait associations and identified candidate genes potentially involved in coleoptile length. Candidate gene expression analyses indicated that japonica rice genotypes possess complex genetic elements that control final coleoptile length under low oxygen.


Assuntos
Mapeamento Cromossômico , Cotilédone/genética , Cotilédone/metabolismo , Dissecação , Oryza/genética , Oryza/metabolismo , Carboidratos/análise , Hipóxia Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Estudo de Associação Genômica Ampla , Genótipo , Germinação , Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Genomics ; 15: 125, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24521234

RESUMO

BACKGROUND: Leaf pigment content is an important trait involved in environmental interactions. In order to determine its impact on drought tolerance in wheat, we characterized a pale-green durum wheat mutant (Triticum turgidum L. var. durum) under contrasting water availability conditions. RESULTS: The pale-green mutant was investigated by comparing pigment content and gene/protein expression profiles to wild-type plants at anthesis. Under well-watered (control) conditions the mutant had lower levels of chlorophylls and carotenoids, but higher levels of xanthophyll de-epoxidation compared to wild-type. Transcriptomic analysis under control conditions showed that defense genes (encoding e.g. pathogenesis-related proteins, peroxidases and chitinases) were upregulated in the mutant, suggesting the presence of mild oxidative stress that was compensated without altering the net rate of photosynthesis. Transcriptomic analysis under terminal water stress conditions, revealed the modulation of antioxidant enzymes, photosystem components, and enzymes representing carbohydrate metabolism and the tricarboxylic acid cycle, indicating that the mutant was exposed to greater oxidative stress than the wild-type plants, but had a limited capacity to respond. We also compared the two genotypes under irrigated and rain-fed field conditions over three years, finding that the greater oxidative stress and corresponding molecular changes in the pale-green mutant were associated to a yield reduction. CONCLUSIONS: This study provides insight on the effect of pigment content in the molecular response to drought. Identified genes differentially expressed under terminal water stress may be valuable for further studies addressing drought resistance in wheat.


Assuntos
Perfilação da Expressão Gênica , Proteômica , Triticum/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Secas , Regulação da Expressão Gênica de Plantas , Genótipo , Estresse Oxidativo , Fotossíntese/genética , Análise de Componente Principal
3.
BMC Genomics ; 14: 868, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24320731

RESUMO

BACKGROUND: Alloplasmic lines provide a unique tool to study nuclear-cytoplasmic interactions. Three alloplasmic lines, with nuclear genomes from Triticum aestivum and harboring cytoplasm from Aegilops uniaristata, Aegilops tauschii and Hordeum chilense, were investigated by transcript and metabolite profiling to identify the effects of cytoplasmic substitution on nuclear-cytoplasmic signaling mechanisms. RESULTS: In combining the wheat nuclear genome with a cytoplasm of H. chilense, 540 genes were significantly altered, whereas 11 and 28 genes were significantly changed in the alloplasmic lines carrying the cytoplasm of Ae. uniaristata or Ae. tauschii, respectively. We identified the RNA maturation-related process as one of the most sensitive to a perturbation of the nuclear-cytoplasmic interaction. Several key components of the ROS chloroplast retrograde signaling, together with the up-regulation of the ROS scavenging system, showed that changes in the chloroplast genome have a direct impact on nuclear-cytoplasmic cross-talk. Remarkably, the H. chilense alloplasmic line down-regulated some genes involved in the determination of cytoplasmic male sterility without expressing the male sterility phenotype. Metabolic profiling showed a comparable response of the central metabolism of the alloplasmic and euplasmic lines to light, while exposing larger metabolite alterations in the H. chilense alloplasmic line as compared with the Aegilops lines, in agreement with the transcriptomic data. Several stress-related metabolites, remarkably raffinose, were altered in content in the H. chilense alloplasmic line when exposed to high light, while amino acids, as well as organic acids were significantly decreased. Alterations in the levels of transcript, related to raffinose, and the photorespiration-related metabolisms were associated with changes in the level of related metabolites. CONCLUSION: The replacement of a wheat cytoplasm with the cytoplasm of a related species affects the nuclear-cytoplasmic cross-talk leading to transcript and metabolite alterations. The extent of these modifications was limited in the alloplasmic lines with Aegilops cytoplasm, and more evident in the alloplasmic line with H. chilense cytoplasm. We consider that, this finding might be linked to the phylogenetic distance of the genomes.


Assuntos
Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Genoma de Planta , Triticum/genética , Triticum/metabolismo , Cloroplastos/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Metabolômica/métodos , Mitocôndrias/metabolismo , Fotossíntese/genética , Infertilidade das Plantas/genética , Transdução de Sinais
4.
BMC Genomics ; 14: 821, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24267539

RESUMO

BACKGROUND: Durum wheat often faces water scarcity and high temperatures, two events that usually occur simultaneously in the fields. Here we report on the stress responsive strategy of two durum wheat cultivars, characterized by different water use efficiency, subjected to drought, heat and a combination of both stresses. RESULTS: The cv Ofanto (lower water use efficiency) activated a large set of well-known drought-related genes after drought treatment, while Cappelli (higher water use efficiency) showed the constitutive expression of several genes induced by drought in Ofanto and a modulation of a limited number of genes in response to stress. At molecular level the two cvs differed for the activation of molecular messengers, genes involved in the regulation of chromatin condensation, nuclear speckles and stomatal closure. Noteworthy, the heat response in Cappelli involved also the up-regulation of genes belonging to fatty acid ß-oxidation pathway, glyoxylate cycle and senescence, suggesting an early activation of senescence in this cv. A gene of unknown function having the greatest expression difference between the two cultivars was selected and used for expression QTL analysis, the corresponding QTL was mapped on chromosome 6B. CONCLUSION: Ofanto and Cappelli are characterized by two opposite stress-responsive strategies. In Ofanto the combination of drought and heat stress led to an increased number of modulated genes, exceeding the simple cumulative effects of the two single stresses, whereas in Cappelli the same treatment triggered a number of differentially expressed genes lower than those altered in response to heat stress alone. This work provides clear evidences that the genetic system based on Cappelli and Ofanto represents an ideal tool for the genetic dissection of the molecular response to drought and other abiotic stresses.


Assuntos
Adaptação Biológica , Secas , Temperatura Alta , Estresse Fisiológico/genética , Triticum/fisiologia , Água , Envelhecimento/genética , Análise por Conglomerados , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Glioxilatos/metabolismo , Redes e Vias Metabólicas , Oxirredução , Folhas de Planta , Locos de Características Quantitativas , Característica Quantitativa Herdável , Estabilidade de RNA , Transdução de Sinais
5.
Plants (Basel) ; 12(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36840105

RESUMO

Rice blast, caused by Pyricularia oryzae, is one of the main rice diseases worldwide. The pyramiding of blast-resistance (Pi) genes, coupled to Marker-Assisted BackCrossing (MABC), provides broad-spectrum and potentially durable resistance while limiting the donor genome in the background of an elite cultivar. In this work, MABC coupled to foreground and background selections based on KASP marker assays has been applied to introgress four Pi genes (Piz, Pib, Pita, and Pik) in a renowned japonica Italian rice variety, highly susceptible to blast. Molecular analyses on the backcross (BC) lines highlighted the presence of an additional blast-resistance gene, the Pita-linked Pita2/Ptr gene, therefore increasing the number of blast-resistance introgressed genes to five. The recurrent genome was recovered up to 95.65%. Several lines carrying four (including Pita2) Pi genes with high recovery percentage levels were also obtained. Phenotypic evaluations confirmed the effectiveness of the pyramided lines against multivirulent strains, which also had broad patterns of resistance in comparison to those expected based on the pyramided Pi genes. The developed blast-resistant japonica lines represent useful donors of multiple blast-resistance genes for future rice-breeding programs related to the japonica group.

6.
Rice (N Y) ; 16(1): 2, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36633713

RESUMO

BACKGROUND: Rice is one of the most salt sensitive crops at seedling, early vegetative and reproductive stages. Varieties with salinity tolerance at seedling stage promote an efficient growth at early stages in salt affected soils, leading to healthy vegetative growth that protects crop yield. Saltol major QTL confers capacity to young rice plants growing under salt condition by maintaining a low Na+/K+ molar ratio in the shoots. RESULTS: Marker-assisted backcross (MABC) procedure was adopted to transfer Saltol locus conferring salt tolerance at seedling stage from donor indica IR64-Saltol to two temperate japonica varieties, Vialone Nano and Onice. Forward and background selections were accomplished using polymorphic KASP markers and a final evaluation of genetic background recovery of the selected lines was conducted using 15,580 SNP markers obtained from Genotyping by Sequencing. Three MABC generations followed by two selfing, allowed the identification of introgression lines achieving a recovery of the recurrent parent (RP) genome up to 100% (based on KASP markers) or 98.97% (based on GBS). Lines with highest RP genome recovery (RPGR) were evaluated for agronomical-phenological traits in field under non-salinized conditions. VN1, VN4, O1 lines were selected considering the agronomic evaluations and the RPGR% results as the most interesting for commercial exploitation. A physiological characterization was conducted by evaluating salt tolerance under hydroponic conditions. The selected lines showed lower standard evaluation system (SES) scores: 62% of VN4, and 57% of O1 plants reaching SES 3 or SES 5 respectively, while only 40% of Vialone Nano and 25% of Onice plants recorded scores from 3 to 5, respectively. VN1, VN4 and O1 showed a reduced electrolyte leakage values, and limited negative effects on relative water content and shoot/root fresh weight ratio. CONCLUSION: The Saltol locus was successfully transferred to two elite varieties by MABC in a time frame of three years. The application of background selection until BC3F3 allowed the selection of lines with a RPGR up to 98.97%. Physiological evaluations for the selected lines indicate an improved salinity tolerance at seedling stage. The results supported the effectiveness of the Saltol locus in temperate japonica and of the MABC procedure for recovering of the RP favorable traits.

7.
Nat Genet ; 51(5): 885-895, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30962619

RESUMO

The domestication of wild emmer wheat led to the selection of modern durum wheat, grown mainly for pasta production. We describe the 10.45 gigabase (Gb) assembly of the genome of durum wheat cultivar Svevo. The assembly enabled genome-wide genetic diversity analyses revealing the changes imposed by thousands of years of empirical selection and breeding. Regions exhibiting strong signatures of genetic divergence associated with domestication and breeding were widespread in the genome with several major diversity losses in the pericentromeric regions. A locus on chromosome 5B carries a gene encoding a metal transporter (TdHMA3-B1) with a non-functional variant causing high accumulation of cadmium in grain. The high-cadmium allele, widespread among durum cultivars but undetected in wild emmer accessions, increased in frequency from domesticated emmer to modern durum wheat. The rapid cloning of TdHMA3-B1 rescues a wild beneficial allele and demonstrates the practical use of the Svevo genome for wheat improvement.


Assuntos
Triticum/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Cádmio/metabolismo , Cromossomos de Plantas/genética , Domesticação , Variação Genética , Genoma de Planta , Filogenia , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética , Sintenia , Tetraploidia , Triticum/classificação , Triticum/metabolismo
8.
Plant Mol Biol ; 55(3): 399-416, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15604689

RESUMO

WRKY proteins constitute a large family of plant specific transcription factors implicated in many different processes. Here we describe Hv-WRKY38, a barley gene coding for a WRKY protein, whose expression is involved in cold and drought stress response. Hv-WRKY38 was early and transiently expressed during exposure to low non-freezing temperature, in ABA-independent manner. Furthermore, it showed a continuous induction during dehydration and freezing treatments. A WRKY38:YFP fusion protein was found to localise into the nucleus upon introduction into epidermal onion cells. Bacterially expressed Hv-WRKY38 was able to bind in vitro to the W-box element (T)TGAC(C/T) also recognisable by other WRKY proteins. Hv-WRKY38 genomic DNA was sequenced and mapped onto the centromeric region of the barley chromosome 6H. Arabidopsis and rice sequences homologous to Hv-WRKY38 were also identified. Our results indicate that Hv-WRKY38 transcription factor may play a regulatory role in abiotic stress response.


Assuntos
Hordeum/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Sequência de Bases , Northern Blotting , Núcleo Celular/metabolismo , Temperatura Baixa , DNA de Plantas/química , DNA de Plantas/genética , Ensaio de Desvio de Mobilidade Eletroforética , Éxons , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hordeum/efeitos dos fármacos , Íntrons , Dados de Sequência Molecular , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Proteínas de Plantas/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA