Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Org Biomol Chem ; 20(23): 4724-4735, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35612321

RESUMO

Research on human milk oligosaccharides (HMOs) has increased over the past decade showing great interest in their beneficial effects. Here we describe a method for the selective deacetylation using immobilised Candida antarctica lipase-B, Novozyme N435 (N435), of pyranose saccharides in organic media with the aim of simplifying and improving the pathways for the synthesis of HMOs. By first studying in depth the deacetylation reaction of peracetylated D-glucose two reaction conditions were found, which were used on different HMO building blocks, peracetylated saccharides and thioglycosides. D-Glucose based saccharides showed selectivity towards the fourth and the sixth position deacetylation. While α-anomer of peracetylated D-galactose remained unreactive and ß-anomer favoured the first position deacetylation. Peracetylated L-fucose, on the other hand, had no selectivity as the main product was fully unprotected L-fucose. Taking the peracetylated D-glucose deacetylation reaction product and selectively protecting the primary hydroxyl group in the sixth position left only the fourth position open for the glycosylation. Meanwhile, the deacetylation product of D-galactose thioglycoside, with the sixth position deacetylated, had both acceptor and donor capabilities. Using the two aforementioned products derived from the N435 deacetylation reactions a deviant HMO, 6'-galactosyllactose (6'-GL) was synthesised.


Assuntos
Fucose , Lactose/metabolismo , Leite Humano , Basidiomycota , Carboidratos , Galactose , Glucose , Humanos , Lipase , Oligossacarídeos
2.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35886881

RESUMO

Ionic liquids (ILs) are known for their unique characteristics as solvents and electrolytes. Therefore, new ILs are being developed and adapted as innovative chemical environments for different applications in which their properties need to be understood on a molecular level. Computational data-driven methods provide means for understanding of properties at molecular level, and quantitative structure-property relationships (QSPRs) provide the framework for this. This framework is commonly used to study the properties of molecules in ILs as an environment. The opposite situation where the property is considered as a function of the ionic liquid does not exist. The aim of the present study was to supplement this perspective with new knowledge and to develop QSPRs that would allow the understanding of molecular interactions in ionic liquids based on the structure of the cationic moiety. A wide range of applications in electrochemistry, separation and extraction chemistry depends on the partitioning of solutes between the ionic liquid and the surrounding environment that is characterized by the gas-ionic liquid partition coefficient. To model this property as a function of the structure of a cationic counterpart, a series of ionic liquids was selected with a common bis-(trifluoromethylsulfonyl)-imide anion, [Tf2N]-, for benzene, hexane and cyclohexane. MLR, SVR and GPR machine learning approaches were used to derive data-driven models and their performance was compared. The cross-validation coefficients of determination in the range 0.71-0.93 along with other performance statistics indicated a strong accuracy of models for all data series and machine learning methods. The analysis and interpretation of descriptors revealed that generally higher lipophilicity and dispersion interaction capability, and lower polarity in the cations induces a higher partition coefficient for benzene, hexane, cyclohexane and hydrocarbons in general. The applicability domain analysis of models concluded that there were no highly influential outliers and the models are applicable to a wide selection of cation families with variable size, polarity and aliphatic or aromatic nature.


Assuntos
Líquidos Iônicos , Benzeno , Cátions , Cicloexanos , Hexanos , Humanos , Hidrocarbonetos , Líquidos Iônicos/química , Aprendizado de Máquina
3.
Bioorg Med Chem ; 33: 116043, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33530021

RESUMO

The processes preceding the detachment of cytochrome c (cyt c) from the inner mitochondrial membrane in intrinsic apoptosis involve peroxidation of cardiolipin (CL) catalyzed by cyt c-CL complex. In the present work, we studied the effect of 17 dietary flavonoids on the peroxidase activity of cyt c bound to liposomes. Specifically, we explored the relationship between peroxidase activity and flavonoids' (1) potential to modulate cyt c unfolding, (2) effect on the oxidation state of heme iron, (3) membrane permeability, (4) membrane binding energy, and (5) structure. The measurements revealed that flavones, flavonols, and flavanols were the strongest, while isoflavones were the weakest inhibitors of the oxidation. Flavonoids' peroxidase inhibition activity correlated positively with their potential to suppress Trp-59 fluorescence in cyt c as well as the number of OH groups. Hydrophilic flavonoids, such as catechin, having the lowest membrane permeability and the strongest binding with phosphocholine (PC) based on the quantum chemical calculations exhibited the strongest inhibition of Amplex Red (AR) peroxidation, suggesting a membrane-protective function of flavonoids at the surface. The results of the present research specify basic principles for the design of molecules that will control the catalytic oxidation of lipids in mitochondrial membranes. These principles take into account the number of hydroxyl groups and hydrophilicity of flavonoids.


Assuntos
Cardiolipinas/metabolismo , Citocromos c/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Cardiolipinas/química , Citocromos c/química , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Flavonoides/química , Humanos , Estrutura Molecular , Oxirredução , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206613

RESUMO

Many chemicals that enter the environment, food chain, and the human body can disrupt androgen-dependent pathways and mimic hormones and therefore, may be responsible for multiple diseases from reproductive to tumor. Thus, modeling and predicting androgen receptor activity is an important area of research. The aim of the current study was to find a method or combination of methods to predict compounds that can bind to and/or disrupt the androgen receptor, and thereby guide decision making and further analysis. A stepwise procedure proceeded from analysis of protein structures from human, chimp, and rat, followed by docking and subsequent ligand, and statistics based techniques that improved classification gradually. The best methods used multivariate logistic regression of combinations of chimpanzee protein structural docking scores, extended connectivity fingerprints, and naïve Bayesians of known binders and non-binders. Combination or consensus methods included data from a variety of procedures to improve the final model accuracy.


Assuntos
Teorema de Bayes , Disruptores Endócrinos/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores Androgênicos/química , Disruptores Endócrinos/metabolismo , Humanos , Ligantes , Modelos Logísticos , Estrutura Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Curva ROC , Receptores Androgênicos/metabolismo , Reprodutibilidade dos Testes
5.
PLoS Biol ; 14(12): e2000322, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27923039

RESUMO

Plant gas exchange is regulated by guard cells that form stomatal pores. Stomatal adjustments are crucial for plant survival; they regulate uptake of CO2 for photosynthesis, loss of water, and entrance of air pollutants such as ozone. We mapped ozone hypersensitivity, more open stomata, and stomatal CO2-insensitivity phenotypes of the Arabidopsis thaliana accession Cvi-0 to a single amino acid substitution in MITOGEN-ACTIVATED PROTEIN (MAP) KINASE 12 (MPK12). In parallel, we showed that stomatal CO2-insensitivity phenotypes of a mutant cis (CO2-insensitive) were caused by a deletion of MPK12. Lack of MPK12 impaired bicarbonate-induced activation of S-type anion channels. We demonstrated that MPK12 interacted with the protein kinase HIGH LEAF TEMPERATURE 1 (HT1)-a central node in guard cell CO2 signaling-and that MPK12 functions as an inhibitor of HT1. These data provide a new function for plant MPKs as protein kinase inhibitors and suggest a mechanism through which guard cell CO2 signaling controls plant water management.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Variação Genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mapeamento Cromossômico , Ozônio/metabolismo , Fotossíntese , Locos de Características Quantitativas , Água
6.
J Chem Inf Model ; 59(5): 2442-2455, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30790522

RESUMO

Permeability is used to describe and evaluate the absorption of drug substances in the human gastrointestinal tract (GIT). Permeability is largely dependent on fluctuating pH that causes the ionization of drug substances and also influences regional absorption in the GIT. Therefore, classification models that characterize permeability at wide ranges of pH were derived in the current study. For this, drug substances were described with six data series that were measured with a parallel artificial membrane permeability assay (PAMPA), including a permeability profile at four pH values (3, 5, 7.4, and 9), and the highest and intrinsic membrane permeability. Logistic regression classification models were developed and compared by using two distinct sets of descriptors: (1) a hydrophobicity descriptor, the logarithm of the octanol-water partition (logPow) or distribution (logD) coefficient and (2) theoretical molecular descriptors. In both cases, models have good classification and descriptive capabilities for the training set (accuracy: 0.76-0.91). Triple validation with three sets of drug substances shows good prediction capability for all models: validation set (accuracy: 0.73-0.91), external validation set (accuracy: 0.72-0.9), and the permeability classes of FDA reference drugs for the biopharmaceutical classification system (BCS) (accuracy: 0.72-0.88). The identification of BCS permeability classes was further improved with decision trees that consolidated predictions from models with each descriptor type. These decision trees have higher confidence and accuracy (0.91 for theoretical molecular descriptors and 0.81 for hydrophobicity descriptors) than the individual models in assigning drug substances into BCS permeability classes. A detailed analysis of classification models and related decision trees suggests that they are suitable for predicting classes of permeability for passively transported drug substances, including specifically within the BCS framework. All developed models are available at the QsarDB repository ( http://dx.doi.org/10.15152/QDB.206 ).


Assuntos
Permeabilidade da Membrana Celular , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Trato Gastrointestinal/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Logísticos
7.
J Comput Aided Mol Des ; 31(5): 441-451, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28374255

RESUMO

Generative topographic mapping (GTM) has been used to visualize and analyze the chemical space of antimalarial compounds as well as to build predictive models linking structure of molecules with their antimalarial activity. For this, a database, including ~3000 molecules tested in one or several of 17 anti-Plasmodium activity assessment protocols, has been compiled by assembling experimental data from in-house and ChEMBL databases. GTM classification models built on subsets corresponding to individual bioassays perform similarly to the earlier reported SVM models. Zones preferentially populated by active and inactive molecules, respectively, clearly emerge in the class landscapes supported by the GTM model. Their analysis resulted in identification of privileged structural motifs of potential antimalarial compounds. Projection of marketed antimalarial drugs on this map allowed us to delineate several areas in the chemical space corresponding to different mechanisms of antimalarial activity. This helped us to make a suggestion about the mode of action of the molecules populating these zones.


Assuntos
Antimaláricos/química , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Bases de Dados Factuais , Desenho de Fármacos , Humanos , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade
8.
Bioorg Med Chem ; 24(11): 2519-29, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27108399

RESUMO

A set of top-ranked compounds from a multi-objective in silico screen was experimentally tested for toxicity and the ability to inhibit the activity of HIV-1 reverse transcriptase (RT) in cell-free assay and in cell-based assay using HIV-1 based virus-like particles. Detailed analysis of a commercial sample that indicated specific inhibition of HIV-1 reverse transcription revealed that a minor component that was structurally similar to that of the main compound was responsible for the strongest inhibition. As a result, novel s-triazine derivatives were proposed, modelled, discovered, and synthesised, and their antiviral activity and cellular toxicity were tested. Compounds 18a and 18b were found to be efficient HIV-1 RT inhibitors, with an IC50 of 5.6±1.1µM and 0.16±0.05µM in a cell-based assay using infectious HIV-1, respectively. Compound 18b also had no detectable toxicity for different human cell lines. Their binding mode and interactions with the RT suggest that there was strong and adaptable binding in a tight (NNRTI) hydrophobic pocket. In summary, this iterative study produced structural clues and led to a group of non-toxic, novel compounds to inhibit HIV-RT with up to nanomolar potency.


Assuntos
Fármacos Anti-HIV/farmacologia , Descoberta de Drogas , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Triazinas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Células Cultivadas , Relação Dose-Resposta a Droga , Transcriptase Reversa do HIV/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química
9.
Molecules ; 21(7)2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27367660

RESUMO

Malaria is a parasitic tropical disease that kills around 600,000 patients every year. The emergence of resistant Plasmodium falciparum parasites to artemisinin-based combination therapies (ACTs) represents a significant public health threat, indicating the urgent need for new effective compounds to reverse ACT resistance and cure the disease. For this, extensive curation and homogenization of experimental anti-Plasmodium screening data from both in-house and ChEMBL sources were conducted. As a result, a coherent strategy was established that allowed compiling coherent training sets that associate compound structures to the respective antimalarial activity measurements. Seventeen of these training sets led to the successful generation of classification models discriminating whether a compound has a significant probability to be active under the specific conditions of the antimalarial test associated with each set. These models were used in consensus prediction of the most likely active from a series of curcuminoids available in-house. Positive predictions together with a few predicted as inactive were then submitted to experimental in vitro antimalarial testing. A large majority from predicted compounds showed antimalarial activity, but not those predicted as inactive, thus experimentally validating the in silico screening approach. The herein proposed consensus machine learning approach showed its potential to reduce the cost and duration of antimalarial drug discovery.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Simulação por Computador , Mineração de Dados , Desenho de Fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Relação Quantitativa Estrutura-Atividade , Curcuma/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos
10.
J Chem Inf Model ; 54(11): 3172-85, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25303089

RESUMO

A delicate balance exists between a drug molecule's toxicity and its activity. Indeed, efficacy, toxicity, and side effect problems are a common cause for the termination of drug candidate compounds and development projects. To address this, an antitarget interaction profile is built and combined with virtual screening and cross docking for new inhibitors of HIV-1 integrase, in order to consider possible off-target interactions as early as possible in a drug or hit discovery program. New ranking techniques using triangular numbers improve ranking information on the compounds and recovery of known inhibitors into the top compounds using different docking programs. This improved ranking arises from using consensus of ranks between docking programs and ligand efficiencies to derive a new rank, instead of using absolute score values, or average of ranks. The triangular number rerank also allowed the objective combination of results from several protein targets or screen conditions and several programs. Triangular number reranking conserves more information than other reranking methods such as average of scores or averages of ranks. In addition, the use of triangular numbers for reranking makes possible the use of thresholds with a justified leeway based on the number of available known inhibitors, so that the majority of the compounds above the threshold in ranks compare to the compounds that have known experimentally determined biological activity. The battery of anti- or off-targets can be tailored to specific molecular or drug design challenges. In silico filters can thus be deployed in successive stages, for prefiltering, activity profiling, and for further analysis and triaging of libraries of compounds.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , Integrase de HIV/química , Inibidores de Integrase de HIV/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Conformação Proteica , Interface Usuário-Computador
11.
J Comput Aided Mol Des ; 27(7): 583-603, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23884706

RESUMO

The scientific literature is important source of experimental and chemical structure data. Very often this data has been harvested into smaller or bigger data collections leaving the data quality and curation issues on shoulders of users. The current research presents a systematic and reproducible workflow for collecting series of data points from scientific literature and assembling a database that is suitable for the purposes of high quality modelling and decision support. The quality assurance aspect of the workflow is concerned with the curation of both chemical structures and associated toxicity values at (1) single data point level and (2) collection of data points level. The assembly of a database employs a novel "timeline" approach. The workflow is implemented as a software solution and its applicability is demonstrated on the example of the Tetrahymena pyriformis acute aquatic toxicity endpoint. A literature collection of 86 primary publications for T. pyriformis was found to contain 2,072 chemical compounds and 2,498 unique toxicity values, which divide into 2,440 numerical and 58 textual values. Every chemical compound was assigned to a preferred toxicity value. Examples for most common chemical and toxicological data curation scenarios are discussed.


Assuntos
Biologia Computacional/métodos , Mineração de Dados , Bases de Dados de Proteínas , Fluxo de Trabalho
12.
J Chem Inf Model ; 52(8): 2165-80, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22830445

RESUMO

The increasing knowledge of both structure and activity of compounds provides a good basis for enhancing the pharmacological characterization of chemical libraries. In addition, pharmacology can be seen as incorporating both advances from molecular biology as well as chemical sciences, with innovative insight provided from studying target-ligand data from a ligand molecular point of view. Predictions and profiling of libraries of drug candidates have previously focused mainly on certain cases of oral bioavailability. Inclusion of other administration routes and disease-specificity would improve the precision of drug profiling. In this work, recent data are extended, and a probability-based approach is introduced for quantitative and gradual classification of compounds into categories of drugs/nondrugs, as well as for disease- or organ-specificity. Using experimental data of over 1067 compounds and multivariate logistic regressions, the classification shows good performance in training and independent test cases. The regressions have high statistical significance in terms of the robustness of coefficients and 95% confidence intervals provided by a 1000-fold bootstrapping resampling. Besides their good predictive power, the classification functions remain chemically interpretable, containing only one to five variables in total, and the physicochemical terms involved can be easily calculated. The present approach is useful for an improved description and filtering of compound libraries. It can also be applied sequentially or in combinations of filters, as well as adapted to particular use cases. The scores and equations may be able to suggest possible routes for compound or library modification. The data is made available for reuse by others, and the equations are freely accessible at http://hermes.chem.ut.ee/~alfx/druglogit.html.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Doença , Preparações Farmacêuticas/classificação , Análise Discriminante , Humanos , Ligantes , Modelos Logísticos , Modelos Moleculares , Conformação Molecular , Análise Multivariada , Especificidade de Órgãos , Preparações Farmacêuticas/química , Probabilidade
13.
Pharmaceutics ; 14(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297685

RESUMO

Intrinsic aqueous solubility is a foundational property for understanding the chemical, technological, pharmaceutical, and environmental behavior of drug substances. Despite years of solubility research, molecular structure-based prediction of the intrinsic aqueous solubility of drug substances is still under active investigation. This paper describes the authors' systematic data-driven modelling in which two fit-for-purpose training data sets for intrinsic aqueous solubility were collected and curated, and three quantitative structure-property relationships were derived to make predictions for the most recent solubility challenge. All three models perform well individually, while being mechanistically transparent and easy to understand. Molecular descriptors involved in the models are related to the following key steps in the solubility process: dissociation of the molecule from the crystal, formation of a cavity in the solvent, and insertion of the molecule into the solvent. A consensus modeling approach with these models remarkably improved prediction capability and reduced the number of strong outliers by more than two times. The performance and outliers of the second solubility challenge predictions were analyzed retrospectively. All developed models have been published in the QsarDB.org repository according to FAIR principles and can be used without restrictions for exploring, downloading, and making predictions.

14.
J Chem Inf Model ; 51(10): 2595-611, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-21875140

RESUMO

New hits against HIV-1 wild-type and Y181C drug-resistant reverse transcriptases were predicted taking into account the possibility of some of the known metabolism interactions. In silico hits against a set of antitargets (i.e., proteins or nucleic acids that are off-targets from the desired pharmaceutical target objective) are used to predict a simple, visual measure of possible interactions for the ligands, which helps to introduce early safety considerations into the design of compounds before lead optimization. This combined approach consists of consensus docking and scoring: cross-docking to a group of wild-type and drug-resistant mutant proteins, ligand efficiency (also called binding efficiency) indices as new ranking measures, pre- and postdocking filters, a set of antitargets and estimation, and minimization of atomic clashes. Diverse, small-molecule compounds with new chemistry (such as a triazine core with aromatic side chains) as well as known drugs for different applications (oxazepam, chlorthalidone) were highly ranked to the targets having binding interactions and functional group spatial arrangements similar to those of known inhibitors, while being moderate to low binders to the antitargets. The results are discussed on the basis of their relevance to medicinal and computational chemistry. Optimization of ligands to targets and off-targets or antitargets is foreseen to be critical for compounds directed at several simultaneous sites.


Assuntos
Desenho de Fármacos , Farmacorresistência Viral/genética , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Mutação , Fármacos Anti-HIV/química , Fármacos Anti-HIV/metabolismo , Fármacos Anti-HIV/farmacologia , Área Sob a Curva , Cristalografia por Raios X , Sistema Enzimático do Citocromo P-450/metabolismo , Farmacorresistência Viral/efeitos dos fármacos , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Proteica , Curva ROC , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Água/metabolismo
15.
Chemosphere ; 262: 128313, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182081

RESUMO

Androgens and androgen receptor regulate a variety of biological effects in the human body. The impaired functioning of androgen receptor may have different adverse health effects from cancer to infertility. Therefore, it is important to determine whether new chemicals have any binding activity and act as androgen agonists or antagonists before commercial use. Due to the large number of chemicals that require experimental testing, the computational methods are a viable alternative. Therefore, the aim of the present study was to develop predictive QSAR models for classifying compounds according to their activity at the androgen receptor. A large data set of chemicals from the CoMPARA project was used for this purpose and random forest classification models have been developed for androgen binding, agonistic, and antagonistic activity. In addition, a unique effort has been made for multi-class approach that discriminates between inactive compounds, agonists and antagonists simultaneously. For the evaluation set, the classification models predicted agonists with 80% of accuracy and for the antagonists' and binders' the respective metrics were 72% and 78%. Combining agonists, antagonists and inactive compounds into a multi-class approach added complexity to the modelling task and resulted to 64% prediction accuracy for the evaluation set. Considering the size of the training data sets and their imbalance, the achieved evaluation accuracy is very good. The final classification models are available for exploring and predicting at QsarDB repository (https://doi.org/10.15152/QDB.236).


Assuntos
Antagonistas de Receptores de Andrógenos/classificação , Androgênios/classificação , Modelos Químicos , Receptores Androgênicos/metabolismo , Antagonistas de Receptores de Andrógenos/química , Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/química , Androgênios/farmacologia , Humanos , Aprendizado de Máquina , Ligação Proteica , Relação Quantitativa Estrutura-Atividade
16.
F1000Res ; 102021.
Artigo em Inglês | MEDLINE | ID: mdl-37842337

RESUMO

Toxicology has been an active research field for many decades, with academic, industrial and government involvement. Modern omics and computational approaches are changing the field, from merely disease-specific observational models into target-specific predictive models. Traditionally, toxicology has strong links with other fields such as biology, chemistry, pharmacology and medicine. With the rise of synthetic and new engineered materials, alongside ongoing prioritisation needs in chemical risk assessment for existing chemicals, early predictive evaluations are becoming of utmost importance to both scientific and regulatory purposes. ELIXIR is an intergovernmental organisation that brings together life science resources from across Europe. To coordinate the linkage of various life science efforts around modern predictive toxicology, the establishment of a new ELIXIR Community is seen as instrumental. In the past few years, joint efforts, building on incidental overlap, have been piloted in the context of ELIXIR. For example, the EU-ToxRisk, diXa, HeCaToS, transQST, and the nanotoxicology community have worked with the ELIXIR TeSS, Bioschemas, and Compute Platforms and activities. In 2018, a core group of interested parties wrote a proposal, outlining a sketch of what this new ELIXIR Toxicology Community would look like. A recent workshop (held September 30th to October 1st, 2020) extended this into an ELIXIR Toxicology roadmap and a shortlist of limited investment-high gain collaborations to give body to this new community. This Whitepaper outlines the results of these efforts and defines our vision of the ELIXIR Toxicology Community and how it complements other ELIXIR activities.


Assuntos
Disciplinas das Ciências Biológicas , Europa (Continente) , Medição de Risco
17.
J Comput Chem ; 31(1): 174-84, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19422000

RESUMO

A dataset of protein-drug complexes with experimental binding energy and crystal structure were analyzed and the performance of different docking engines and scoring functions (as well as components of these) for predicting the free energy of binding and several ligand efficiency indices were compared. The aim was not to evaluate the best docking method, but to determine the effect of different efficiency indices on the experimental and predicted free energy. Some ligand efficiency indices, such as DeltaG/W (Wiener index), DeltaG/NoC (number of carbons), and DeltaG/P (partition coefficient), improve the correlation between experimental and calculated values. This effect was shown to be valid across the different scoring functions and docking programs. It also removes the common bias of scoring functions in favor of larger ligands. For all scoring functions, the efficiency indices effectively normalize the free energy derived indices, to give values closer to experiment. Compound collection filtering can be done prior or after docking, using pharmacokinetic as well as pharmacodynamic profiles. Achieving these better correlations with experiment can improve the ability of docking scoring functions to predict active molecules in virtual screening.


Assuntos
Ligantes , Ligação Proteica , Proteínas/química , Termodinâmica , Biologia Computacional/métodos
18.
J Chem Inf Model ; 50(7): 1275-83, 2010 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-20593816

RESUMO

Principal component analysis (PCA) of a large data matrix (153 solvents x 396 solutes) for Ostwald solubility coefficients (log L) resulted in a two-component model covering 98.6% of the variability. Analysis of the principal components exposed the structural characteristics of solutes and solvents that codify interactions which determine the behavior of a chemical in the surrounding media. The pattern revealed by PCA analysis distinguishes solutes according to the molecular size, functional groups, and electrostatic interactions, such as polarity and hydrogen-bonding donor and acceptor properties.


Assuntos
Análise de Componente Principal , Solventes/química , Relação Quantitativa Estrutura-Atividade , Solubilidade
19.
Environ Health Perspect ; 128(2): 27002, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32074470

RESUMO

BACKGROUND: Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones and alter synthesis, transport, or metabolic pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory approaches for evaluating bioactivity. This need is being addressed using high-throughput screening (HTS) in vitro approaches and computational modeling. OBJECTIVES: In support of the Endocrine Disruptor Screening Program, the U.S. Environmental Protection Agency (EPA) led two worldwide consortiums to virtually screen chemicals for their potential estrogenic and androgenic activities. Here, we describe the Collaborative Modeling Project for Androgen Receptor Activity (CoMPARA) efforts, which follows the steps of the Collaborative Estrogen Receptor Activity Prediction Project (CERAPP). METHODS: The CoMPARA list of screened chemicals built on CERAPP's list of 32,464 chemicals to include additional chemicals of interest, as well as simulated ToxCast™ metabolites, totaling 55,450 chemical structures. Computational toxicology scientists from 25 international groups contributed 91 predictive models for binding, agonist, and antagonist activity predictions. Models were underpinned by a common training set of 1,746 chemicals compiled from a combined data set of 11 ToxCast™/Tox21 HTS in vitro assays. RESULTS: The resulting models were evaluated using curated literature data extracted from different sources. To overcome the limitations of single-model approaches, CoMPARA predictions were combined into consensus models that provided averaged predictive accuracy of approximately 80% for the evaluation set. DISCUSSION: The strengths and limitations of the consensus predictions were discussed with example chemicals; then, the models were implemented into the free and open-source OPERA application to enable screening of new chemicals with a defined applicability domain and accuracy assessment. This implementation was used to screen the entire EPA DSSTox database of ∼875,000 chemicals, and their predicted AR activities have been made available on the EPA CompTox Chemicals dashboard and National Toxicology Program's Integrated Chemical Environment. https://doi.org/10.1289/EHP5580.


Assuntos
Simulação por Computador , Disruptores Endócrinos , Androgênios , Bases de Dados Factuais , Ensaios de Triagem em Larga Escala , Humanos , Receptores Androgênicos , Estados Unidos , United States Environmental Protection Agency
20.
Bioinformatics ; 23(20): 2678-85, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17804436

RESUMO

MOTIVATION: The efficiency indices (EI's) have been derived from the experimental binding affinities of drug candidates to macromolecules. These 'two-in-one' measures include information on both pharmacodynamics and pharmacokinetics of the candidate molecules. The time-consuming experimental measurement of binding affinities of extensive molecule libraries may become a bottle-neck of large scale generation and application of EI's. RESULTS: To overcome this limitation, structure-based calculation of new EI's is introduced using the modified free energy function of the popular program package AutoDock. The results are validated on experimental binding data of biochemical systems such as potent inhibitors bound to beta-secretase, a key enzyme of Alzheimer's disease and various drug-protein complexes. Application of new EI's is tested. Thermodynamics of EI's and their role in virtual high-throughput screening of drugs and in the development of docking programs are discussed. SUPPLEMENTARY INFORMATION: Accompanies this manuscript on the publisher's web site.


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Químicos , Modelos Moleculares , Preparações Farmacêuticas/química , Proteínas/química , Proteínas/ultraestrutura , Sítios de Ligação , Simulação por Computador , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA