Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(11): 1489-1504, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37144413

RESUMO

BACKGROUND: Dkk3 (Dickkopf-3) is a secreted glycoprotein known for its proapoptotic and angiogenic activity. The role of Dkk3 in cardiovascular homeostasis is largely unknown. Remarkably, the Dkk3 gene maps within a chromosome segment linked to the hypertensive phenotype in spontaneously hypertensive rats (SHR). METHODS: We used Dkk3-/- mice or stroke-resistant (sr) and stroke-prone (sp) SHR to examine the role of Dkk3 in the central and peripheral regulation of blood pressure (BP). We used lentiviral expression vector to rescue Dkk3 in knockout mice or to induce Dkk3 overexpression or silencing in SHR. RESULTS: Genetic deletion of Dkk3 in mice enhanced BP and impaired endothelium-dependent acetylcholine-induced relaxation of resistance arteries. These alterations were rescued by restoring Dkk3 expression either in the periphery or in the central nervous system (CNS). Dkk3 was required for the constitutive expression of VEGF (vascular endothelium growth factor), and the action of Dkk3 on BP and endothelium-dependent vasorelaxation was mediated by VEGF-stimulated phosphatidylinositol-3-kinase pathway, leading to eNOS (endothelial NO synthase) activation both in resistance arteries and the CNS. The regulatory function of Dkk3 on BP was confirmed in SHR stroke-resistant and SHR stroke-prone in which was blunted in both resistance arteries and brainstem. In SHR stroke-resistant, lentiviral expression vector-induced Dkk3 expression in the CNS largely reduced BP, whereas Dkk3 knock-down further enhanced BP. In SHR stroke-prone challenged with a hypersodic diet, lentiviral expression vector-induced Dkk3 expression in the CNS displayed a substantial antihypertensive effect and delayed the occurrence of stroke. CONCLUSIONS: These findings demonstrate that Dkk3 acts as peripheral and central regulator of BP by promoting VEGF expression and activating a VEGF/Akt (protein kinase B)/eNOS hypotensive axis.


Assuntos
Hipertensão , Acidente Vascular Cerebral , Animais , Camundongos , Ratos , Pressão Sanguínea , Endotélio Vascular/metabolismo , Hipertensão/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Endogâmicos SHR , Acidente Vascular Cerebral/genética , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular , Vasodilatação
2.
Cell Mol Life Sci ; 80(5): 134, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099206

RESUMO

Mitochondrial dysfunction, causing increased reactive oxygen species (ROS) production, is a molecular feature of heart failure (HF). A defective antioxidant response and mitophagic flux were reported in circulating leucocytes of patients with chronic HF and reduced ejection fraction (HFrEF). Atrial natriuretic peptide (ANP) exerts many cardiac beneficial effects, including the ability to protect cardiomyocytes by promoting autophagy. We tested the impact of ANP on autophagy/mitophagy, altered mitochondrial structure and function and increased oxidative stress in HFrEF patients by both ex vivo and in vivo approaches. The ex vivo study included thirteen HFrEF patients whose peripheral blood mononuclear cells (PBMCs) were isolated and treated with αANP (10-11 M) for 4 h. The in vivo study included six HFrEF patients who received sacubitril/valsartan for two months. PBMCs were characterized before and after treatment. Both approaches analyzed mitochondrial structure and functionality. We found that levels of αANP increased upon sacubitril/valsartan, whereas levels of NT-proBNP decreased. Both the ex vivo direct exposure to αANP and the higher αANP level upon in vivo treatment with sacubitril/valsartan caused: (i) improvement of mitochondrial membrane potential; (ii) stimulation of the autophagic process; (iii) significant reduction of mitochondrial mass-index of mitophagy stimulation-and upregulation of mitophagy-related genes; (iv) reduction of mitochondrial damage with increased inner mitochondrial membrane (IMM)/outer mitochondrial membrane (OMM) index and reduced ROS generation. Herein we demonstrate that αANP stimulates both autophagy and mitophagy responses, counteracts mitochondrial dysfunction, and damages ultimately reducing mitochondrial oxidative stress generation in PBMCs from chronic HF patients. These properties were confirmed upon sacubitril/valsartan administration, a pivotal drug in HFrEF treatment.


Assuntos
Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Fator Natriurético Atrial , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico , Mitofagia , Leucócitos Mononucleares , Espécies Reativas de Oxigênio , Volume Sistólico , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Valsartana/farmacologia , Valsartana/uso terapêutico , Mitocôndrias
3.
Cell Mol Life Sci ; 80(9): 245, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566283

RESUMO

Heart failure is a major side effect of doxorubicin (DOX) treatment in patients with cancer. However, the mechanisms underlying the development of DOX-induced heart failure need to be addressed. This study aims to test whether the serine/threonine kinase MST1, a major Hippo pathway component, contributes to the development of DOX-induced myocardial injury. C57BL/6J WT mice and mice with cardiomyocyte-specific dominant-negative MST1 (kinase-dead) overexpression received three weekly injections of DOX, reaching a final cumulative dose of 18 mg/kg. Echocardiographic, histological and biochemical analyses were performed six weeks after the first DOX administration. The effects of MST1 inhibition on DOX-induced cardiomyocyte injury were also tested in vitro. MST1 signaling was significantly activated in cardiomyocytes in response to DOX treatment in vitro and in vivo. Wild-type (WT) mice treated with DOX developed cardiac dysfunction and mitochondrial abnormalities. However, these detrimental effects were abolished in mice with cardiomyocyte-specific overexpression of dominant-negative MST1 (DN-MST1) or treated with XMU-MP-1, a specific MST1 inhibitor, indicating that MST1 inhibition attenuates DOX-induced cardiac dysfunction. DOX treatment led to a significant downregulation of cardiac levels of SIRT3, a deacetylase involved in mitochondrial protection, in WT mice, which was rescued by MST1 inhibition. Pharmacological inhibition of SIRT3 blunted the protective effects of MST1 inhibition, indicating that SIRT3 downregulation mediates the cytotoxic effects of MST1 activation in response to DOX treatment. Finally, we found a significant upregulation of MST1 and downregulation of SIRT3 levels in human myocardial tissue of cancer patients treated with DOX. In summary, MST1 contributes to DOX-induced cardiomyopathy through SIRT3 downregulation.


Assuntos
Cardiomiopatias , Cardiopatias , Insuficiência Cardíaca , Sirtuína 3 , Humanos , Camundongos , Animais , Sirtuína 3/genética , Regulação para Baixo , Camundongos Endogâmicos C57BL , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Miócitos Cardíacos/metabolismo , Doxorrubicina/farmacologia , Cardiopatias/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Apoptose
4.
Mol Med ; 29(1): 107, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558995

RESUMO

BACKGROUND: A dysfunction of NADH dehydrogenase, the mitochondrial Complex I (CI), associated with the development of left ventricular hypertrophy (LVH) in previous experimental studies. A deficiency of Ndufc2 (subunit of CI) impairs CI activity causing severe mitochondrial dysfunction. The T allele at NDUFC2/rs11237379 variant associates with reduced gene expression and impaired mitochondrial function. The present study tested the association of both NDUFC2/rs11237379 and NDUFC2/rs641836 variants with LVH in hypertensive patients. In vitro studies explored the impact of reduced Ndufc2 expression in isolated cardiomyocytes. METHODS: Two-hundred-forty-six subjects (147 male, 59.7%), with a mean age of 59 ± 15 years, were included for the genetic association analysis. Ndufc2 silencing was performed in both H9c2 and rat primary cardiomyocytes to explore the hypertrophy development and the underlying signaling pathway. RESULTS: The TT genotype at NDUFC2/rs11237379 associated with significantly reduced gene expression. Multivariate analysis revealed that patients carrying this genotype showed significant differences for septal thickness (p = 0.07), posterior wall thickness (p = 0.008), RWT (p = 0.021), LV mass/BSA (p = 0.03), compared to subjects carrying either CC or CT genotypes. Patients carrying the A allele at NDUFC2/rs641836 showed significant differences for septal thickness (p = 0.017), posterior wall thickness (p = 0.011), LV mass (p = 0.003), LV mass/BSA (p = 0.002) and LV mass/height2.7(p = 0.010) after adjustment for covariates. In-vitro, the Ndufc2 deficiency-dependent mitochondrial dysfunction caused cardiomyocyte hypertrophy, pointing to SIRT3-AMPK-AKT-MnSOD as a major underlying signaling pathway. CONCLUSIONS: We demonstrated for the first time a significant association of NDUFC2 variants with LVH in human hypertension and highlight a key role of Ndufc2 deficiency-dependent CI mitochondrial dysfunction on increased susceptibility to cardiac hypertrophy development.


Assuntos
Cardiomegalia , Hipertensão , Humanos , Masculino , Ratos , Animais , Adulto , Pessoa de Meia-Idade , Idoso , Cardiomegalia/genética , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/complicações , Hipertensão/complicações , Hipertensão/genética , Genótipo , Transdução de Sinais , Complexo I de Transporte de Elétrons/genética
5.
Pflugers Arch ; 474(1): 141-153, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757454

RESUMO

Stroke represents a main cause of death and permanent disability worldwide. In the attempt to develop targeted preventive and therapeutic strategies, several efforts were performed over the last decades to identify the specific molecular abnormalities preceding cerebral ischemia and neuronal death. In this regard, mitochondrial dysfunction, autophagy, and intracellular calcium homeostasis appear important contributors to stroke development, as underscored by recent pre-clinical evidence. Intracellular calcium (Ca2+) homeostasis is regulated, among other mechanisms, by the calcium sensor stromal interaction molecule 1 (STIM1) and calcium release-activated calcium modulator (ORAI) members, which mediate the store-operated Ca2+ entry (SOCE). The activity of SOCE is deregulated in animal models of ischemic stroke, leading to ischemic injury exacerbation. We found a different pattern of expression of few SOCE components, dependent from a STIM1 mutation, in cerebral endothelial cells isolated from the stroke-prone spontaneously hypertensive rat (SHRSP), compared to the stroke-resistant (SHRSR) strain, suggesting a potential involvement of this mechanism into the stroke predisposition of SHRSP. In this article, we discuss the relevant role of STIM1 in experimental stroke, as highlighted by the current literature and by our recent experimental findings, and the available evidence in the human disease. We also provide a glance on future perspectives and clinical implications of STIM1.


Assuntos
Proteínas de Neoplasias/metabolismo , Acidente Vascular Cerebral/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Humanos
6.
Cell Mol Neurobiol ; 42(3): 545-556, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32996044

RESUMO

Stroke is a leading cause of death and disability worldwide. Several mechanisms are involved in the pathogenesis of ischemic stroke (IS). The contributory role of the inflammatory and immunity processes was demonstrated both in vitro and in animal models, and was confirmed in humans. IS evokes an immediate inflammatory response that involves complex cellular and molecular mechanisms. All components of the innate and adaptive immunity systems are involved in several steps of the ischemic cascade. In the early phase, inflammatory and immune mechanisms contribute to the brain tissue damage, whereas, in the late phase, they participate to the tissue repair processes. In particular, damage-associated molecular patterns (DAMPs) appear critical for the promotion of altered blood brain barrier permeability, leukocytes infiltration, tissue edema and brain injury. Conversely, the activation of regulatory T lymphocytes (Tregs) plays protective effects. The identification of specific cellular/molecular elements belonging to the inflammatory and immune responses, contributing to the brain ischemic injury and tissue remodeling, offers the advantage to design adequate therapeutic strategies. In this article, we will present an overview of the knowledge on inflammatory and immunity processes in IS, with a particular focus on the role of DAMPs and leukocytes infiltration. We will discuss evidence obtained in preclinical models of IS and in humans. The main molecular mechanisms useful for the development of novel therapeutic approaches will be highlighted. The translation of experimental findings to the human disease is still a difficult step to pursue. Further investigations are required to fill up the existing gaps.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Humanos , Inflamação , Leucócitos , Modelos Animais , Acidente Vascular Cerebral/patologia
7.
Pharmacol Res ; 173: 105875, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34500062

RESUMO

Cerebrovascular disease, a frequent complication of hypertension, is a major public health issue for which novel therapeutic and preventive approaches are needed. Autophagy activation is emerging as a potential therapeutic and preventive strategy toward stroke. Among usual activators of autophagy, the natural disaccharide trehalose (TRE) has been reported to be beneficial in preclinical models of neurodegenerative diseases, atherosclerosis and myocardial infarction. In this study, we tested for the first time the effects of TRE in the stroke-prone spontaneously hypertensive rat (SHRSP) fed with a high-salt stroke permissive diet (JD). We found that TRE reduced stroke occurrence and renal damage in high salt-fed SHRSP. TRE was also able to decrease systolic blood pressure. Through ex-vivo studies, we assessed the beneficial effect of TRE on the vascular function of high salt-fed SHRSP. At the molecular level, TRE restored brain autophagy and reduced mitochondrial mass, along with the improvement of mitochondrial function. The beneficial effects of TRE were associated with increased nuclear translocation of TFEB, a transcriptional activator of autophagy. Our results suggest that TRE may be considered as a natural compound efficacious for the prevention of hypertension-related target organ damage, with particular regard to stroke and renal damage.


Assuntos
Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/prevenção & controle , Trealose/uso terapêutico , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipertensão/metabolismo , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Mitofagia/efeitos dos fármacos , NADPH Oxidases/genética , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Endogâmicos SHR , Sódio na Dieta/administração & dosagem , Trealose/farmacologia , Fator de Necrose Tumoral alfa/genética
8.
Nutr Metab Cardiovasc Dis ; 31(2): 472-480, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33257191

RESUMO

BACKGROUND AND AIM: Although hypertension guidelines highlight the benefits of achieving the recommended blood pressure (BP) targets, hypertension control rate is still insufficient, mostly in high or very high cardiovascular (CV) risk patients. Thus, we aimed to estimate BP control in a cohort of patients at high CV risk in both primary and secondary prevention. METHODS AND RESULTS: A single-center, cross-sectional study was conducted by extracting data from a medical database of adult outpatients aged 40-75 years, who were referred to our Hypertension Unit, Rome (IT), for hypertension assessment. Office BP treatment targets were defined according to 2018 ESC/ESH guidelines as: a)<130/80 mmHg in individuals aged 40-65 years; b)<140/80 mmHg in subjects aged >65 years. Primary prevention patients with SCORE <5% were considered to be at low-intermediate risk, whilst individuals with SCORE ≥5% or patients with comorbidities were defined to be at very high risk. Among 6354 patients (47.2% female, age 58.4 ± 9.6 years), 4164 (65.5%) were in primary prevention with low-intermediate CV risk, 1831 (28.8%) in primary prevention with high-very high CV risk and 359 (5.6%) in secondary prevention. In treated hypertensive outpatients, uncontrolled hypertension rate was significantly higher in high risk primary prevention than in low risk primary prevention and secondary prevention patients (18.4% vs 24.4% vs. 12.5%, respectively; P < 0.001). In high risk primary prevention diabetic patients only 10% achieved the recommended BP targets. CONCLUSIONS: Our data confirmed unsatisfactory BP control among high-risk patients, both in primary and secondary prevention, and suggest the need for a more stringent BP control policies in these patients.


Assuntos
Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Prevenção Primária , Prevenção Secundária , Adulto , Idoso , Comorbidade , Estudos Transversais , Bases de Dados Factuais , Feminino , Fatores de Risco de Doenças Cardíacas , Humanos , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Hipertensão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Pacientes Ambulatoriais , Prevalência , Medição de Risco , Cidade de Roma/epidemiologia , Fatores de Tempo , Resultado do Tratamento
9.
Cell Mol Life Sci ; 77(24): 5121-5130, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32556416

RESUMO

The natriuretic peptides (NPs) family, including a class of hormones and their receptors, is largely known for its beneficial effects within the cardiovascular system to preserve regular functions and health. The concentration level of each component of the family is of crucial importance to guarantee a proper control of both systemic and local cardiovascular functions. A fine equilibrium between gene expression, protein secretion and clearance is needed to achieve the final optimal level of NPs. To this aim, the regulation of gene expression and translation plays a key role. In this regard, we know the existence of fine regulatory mechanisms, the so-called epigenetic mechanisms, which target many genes at either the promoter or the 3'UTR region to inhibit or activate their expression. The gene encoding ANP (NPPA) is regulated by histone modifications, DNA methylation, distinct microRNAs and a natural antisense transcript (NPPA-AS1) with consequent implications for both health and disease conditions. Notably, ANP modulates microRNAs on its own. Histone modifications of BNP gene (NPPB) are associated with several cardiomyopathies. The proBNP processing is regulated by miR30-GALNT1/2 axis. Among other components of the NPs family, CORIN, NPRA, NPRC and NEP may undergo epigenetic regulation. A better understanding of the epigenetic control of the NPs family will allow to gain more insights on the pathological basis of common cardiovascular diseases and to identify novel therapeutic targets. The present review article aims to discuss the major achievements obtained so far with studies on the epigenetic modulation of the NPs family.


Assuntos
Fator Natriurético Atrial/genética , Doença/genética , Regulação da Expressão Gênica/genética , Peptídeos Natriuréticos/genética , Animais , Epigênese Genética , Humanos , MicroRNAs/genética , Procainamida/análogos & derivados , Processamento de Proteína Pós-Traducional/genética , Receptores do Fator Natriurético Atrial
10.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917593

RESUMO

Alterations in the metabolism of sphingolipids, a class of biologically active molecules in cell membranes with direct effect on vascular homeostasis, are increasingly recognized as important determinant in different vascular disorders. However, it is not clear whether sphingolipids are implicated in the pathogenesis of hypertension-related cerebrovascular and renal damage. In this study, we evaluated the existence of possible abnormalities related to the sphingolipid metabolism in the brain and kidneys of two well validated spontaneously hypertensive rat strains, the stroke-prone (SHRSP) and the stroke-resistant (SHRSR) models, as compared to the normotensive Wistar Kyoto (WKY) rat strain. Our results showed a global alteration in the metabolism of sphingolipids in both cerebral and renal tissues of both hypertensive strains as compared to the normotensive rat. However, few defects, such as reduced expression of enzymes involved in the metabolism/catabolism of sphingosine-1-phosphate and in the de novo biosynthetic pathways, were exclusively detected in the SHRSP. Although further studies are necessary to fully understand the significance of these findings, they suggest that defects in specific lipid molecules and/or their related metabolic pathways may likely contribute to the pathogenesis of hypertensive target organ damage and may eventually serve as future therapeutic targets to reduce the vascular consequences of hypertension.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Hipertensão/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Lisofosfolipídeos/metabolismo , Esfingosina/análogos & derivados , Animais , Encéfalo/patologia , Lesões Encefálicas/patologia , Hipertensão/patologia , Rim/patologia , Nefropatias/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Esfingosina/metabolismo
11.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560241

RESUMO

The downregulation of uncoupling protein-2 (UCP2) is associated with increased brain and kidney injury in stroke-prone spontaneously hypertensive rats (SHRSP) fed with a Japanese style hypersodic diet (JD). Systemic overexpression of UCP2 reduces organ damage in JD-fed SHRSP. We examined the effect of brain-specific UCP2 overexpression on blood pressure (BP), stroke occurrence and kidney damage in JD-fed SHRSP. Rats received a single i.c.v. injection of a lentiviral vector encoding UCP2 (LV-UCP2), or an empty vector. The brain delivery of LV-UCP2 significantly delayed the occurrence of stroke and kidney damage. The large reduction of proteinuria observed after LV-UCP2 injection was unexpected, because BP levels were unchanged. At the time of stroke, rats treated with LV-UCP2 still showed a large UCP2 upregulation in the striatum, associated with increases in OPA1 and FIS1 protein levels, and reductions in PGC1-α, SOD2, TNFα mRNA levels and NRF2 protein levels. This suggested UCP2 overexpression enhanced mitochondrial fusion and fission and reduced oxidative damage and inflammation in the striatum of JD-fed SHRSP rats. Our data suggest the existence of central mechanisms that may protect against hypertension-induced organ damage independently of BP, and strengthen the suitability of strategies aimed at enhancing UCP2 expression for the treatment of hypertensive damage.


Assuntos
Corpo Estriado/metabolismo , Hipertensão/terapia , Nefropatias/prevenção & controle , Acidente Vascular Cerebral/prevenção & controle , Proteína Desacopladora 2/genética , Animais , Vetores Genéticos/administração & dosagem , Hipertensão/induzido quimicamente , Hipertensão/complicações , Hipertensão/metabolismo , Nefropatias/etiologia , Nefropatias/metabolismo , Lentivirus/genética , Masculino , Dinâmica Mitocondrial , Estresse Oxidativo , Ratos , Ratos Endogâmicos SHR , Sódio na Dieta/efeitos adversos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo , Proteína Desacopladora 2/metabolismo
12.
Int J Mol Sci ; 20(4)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781751

RESUMO

The pathogenesis of hypertension, as a multifactorial trait, is complex. High blood pressure levels, in turn, concur with the development of cardiovascular damage. Abnormalities of several neurohormonal mechanisms controlling blood pressure homeostasis and cardiovascular remodeling can contribute to these pathological conditions. The natriuretic peptide (NP) family (including ANP (atrial natriuretic peptide), BNP (brain natriuretic peptide), and CNP (C-type natriuretic peptide)), the NP receptors (NPRA, NPRB, and NPRC), and the related protease convertases (furin, corin, and PCSK6) constitute the NP system and represent relevant protective mechanisms toward the development of hypertension and associated conditions, such as atherosclerosis, stroke, myocardial infarction, heart failure, and renal injury. Initially, several experimental studies performed in different animal models demonstrated a key role of the NP system in the development of hypertension. Importantly, these studies provided relevant insights for a better comprehension of the pathogenesis of hypertension and related cardiovascular phenotypes in humans. Thus, investigation of the role of NPs in hypertension offers an excellent example in translational medicine. In this review article, we will summarize the most compelling evidence regarding the molecular mechanisms underlying the physiological and pathological impact of NPs on blood pressure regulation and on hypertension development. We will also discuss the protective effect of NPs toward the increased susceptibility to hypertensive target organ damage.


Assuntos
Hipertensão/prevenção & controle , Peptídeos Natriuréticos/metabolismo , Especificidade de Órgãos , Animais , Pressão Sanguínea , Suscetibilidade a Doenças , Humanos , Hipertensão/sangue , Hipertensão/fisiopatologia , Hipertensão/terapia , Peptídeos Natriuréticos/sangue
13.
Int J Mol Sci ; 19(2)2018 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-29439446

RESUMO

Atrial natriuretic peptide (ANP) is a cardiac hormone which plays important functions to maintain cardio-renal homeostasis. The peptide structure is highly conserved among species. However, a few gene variants are known to fall within the human ANP gene. The variant rs5065 (T2238C) exerts the most substantial effects. The T to C transition at the 2238 position of the gene (13-23% allele frequency in the general population) leads to the production of a 30-, instead of 28-, amino-acid-long α-carboxy-terminal peptide. In vitro, CC2238/αANP increases the levels of reactive oxygen species and causes endothelial damage, vascular smooth muscle cells contraction, and increased platelet aggregation. These effects are achieved through the deregulated activation of type C natriuretic peptide receptor, the consequent inhibition of adenylate cyclase activity, and the activation of Giα proteins. In vivo, endothelial dysfunction and increased platelet aggregation are present in human subjects carrying the C2238/αANP allele variant. Several studies documented an increased risk of stroke and of myocardial infarction in C2238/αANP carriers. Recently, an incomplete response to antiplatelet therapy in ischemic heart disease patients carrying the C2238/αANP variant and undergoing percutaneous coronary revascularization has been reported. In summary, the overall evidence supports the concept that T2238C/ANP is a cardiovascular genetic risk factor that needs to be taken into account in daily clinical practice.


Assuntos
Fator Natriurético Atrial/genética , Doenças Cardiovasculares/genética , Mutação de Sentido Incorreto , Fator Natriurético Atrial/química , Fator Natriurético Atrial/metabolismo , Doenças Cardiovasculares/metabolismo , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único
14.
Circ Res ; 112(10): 1355-64, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23529183

RESUMO

RATIONALE: C2238 atrial natriuretic peptide (ANP) minor allele (substitution of thymidine with cytosine in position 2238) associates with increased risk of cardiovascular events. OBJECTIVE: We investigated the mechanisms underlying the vascular effects of C2238-αANP. METHODS AND RESULTS: In vitro, human umbilical vein endothelial cell were exposed to either wild-type (T2238)- or mutant (C2238)-αANP. Cell survival and apoptosis were tested by Trypan blue, annexin V, and cleaved caspase-3 assays. C2238-αANP significantly reduced human umbilical vein endothelial cell survival and increased apoptosis. In addition, C2238-αANP reduced endothelial tube formation, as assessed by matrigel. C2238-αANP did not differentially modulate natriuretic peptide receptor (NPR)-A/B activity with respect to T2238-αANP, as evaluated by intracellular cGMP levels. In contrast, C2238-αANP, but not T2238-αANP, markedly reduced intracellular cAMP levels in an NPR-C-dependent manner. Accordingly, C2238-αANP showed higher affinity binding to NPR-C, than T2238-αANP. Either NPR-C inhibition by antisense oligonucleotide or NPR-C gene silencing by small interfering RNA rescued survival and tube formation of human umbilical vein endothelial cell exposed to C2238-αANP. Similar data were obtained in human aortic endothelial cell with NPR-C knockdown. NPR-C activation by C2238-αANP inhibited the protein kinase A/Akt1 pathway and increased reactive oxygen species. Adenovirus-mediated Akt1 reactivation rescued the detrimental effects of C2238-αANP. Overall, these data indicate that C2238-αANP affects endothelial cell integrity through NPR-C-dependent inhibition of the cAMP/protein kinase A/Akt1 pathway and increased reactive oxygen species production. Accordingly, C2238-αANP caused impairment of acetylcholine-dependent vasorelaxation ex vivo, which was rescued by NPR-C pharmacological inhibition. Finally, subjects carrying C2238 minor allele showed early endothelial dysfunction, which highlights the clinical relevance of our results. CONCLUSIONS: C2238-αANP reduces endothelial cell survival and impairs endothelial function through NPR-C signaling. NPR-C targeting represents a potential strategy to reduce cardiovascular risk in C2238 minor-allele carriers.


Assuntos
Fator Natriurético Atrial/genética , Fator Natriurético Atrial/fisiologia , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Variação Genética/genética , Peptídeo Natriurético Tipo C/fisiologia , Transdução de Sinais/fisiologia , Alelos , Aorta/efeitos dos fármacos , Aorta/patologia , Aorta/fisiopatologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Fator Natriurético Atrial/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , GMP Cíclico/fisiologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Proteínas Proto-Oncogênicas c-akt/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Veias Umbilicais/efeitos dos fármacos , Veias Umbilicais/patologia , Veias Umbilicais/fisiopatologia
15.
Nutrients ; 15(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36986064

RESUMO

High salt load is a known noxious stimulus for vascular cells and a risk factor for cardiovascular diseases in both animal models and humans. The stroke-prone spontaneously hypertensive rat (SHRSP) accelerates stroke predisposition upon high-salt dietary feeding. We previously demonstrated that high salt load causes severe injury in primary cerebral endothelial cells isolated from SHRSP. This cellular model offers a unique opportunity to test the impact of substances toward the mechanisms underlying high-salt-induced vascular damage. We tested the effects of a bergamot polyphenolic fraction (BPF) on high-salt-induced injury in SHRSP cerebral endothelial cells. Cells were exposed to 20 mM NaCl for 72 h either in the absence or the presence of BPF. As a result, we confirmed that high salt load increased cellular ROS level, reduced viability, impaired angiogenesis, and caused mitochondrial dysfunction with a significant increase in mitochondrial oxidative stress. The addition of BPF reduced oxidative stress, rescued cell viability and angiogenesis, and recovered mitochondrial function with a significant decrease in mitochondrial oxidative stress. In conclusion, BPF counteracts the key molecular mechanisms underlying high-salt-induced endothelial cell damage. This natural antioxidant substance may represent a valuable adjuvant to treat vascular disorders.


Assuntos
Citrus , Hipertensão , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Ratos Endogâmicos SHR , Células Endoteliais , Cloreto de Sódio/farmacologia , Cloreto de Sódio na Dieta/efeitos adversos , Solução Salina , Acidente Vascular Cerebral/etiologia , Pressão Sanguínea
16.
Autophagy ; 19(4): 1087-1099, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35998113

RESUMO

NPPA/atrial natriuretic peptide (natriuretic peptide type A) exerts critical pleiotropic effects in the cardiovascular system, limiting cardiomyocyte hypertrophy and death, reducing cardiac fibrosis and promoting vascular integrity. However, the molecular mechanisms underlying these beneficial effects still need to be clarified. We demonstrated for the first time that macroautophagy/autophagy is involved in the local protective effects of NPPA in cardiomyocytes (CMs), both in vitro and in vivo. Exogenous NPPA rapidly activates autophagy in CMs through NPR1/type A natriuretic peptide receptor and PRKG/protein kinase G signaling and also increases cardiac autophagy in mice. Remarkably, endogenous NPPA is secreted by CMs in response to glucose deprivation or hypoxia, thereby stimulating autophagy through autocrine/paracrine mechanisms. NPPA preserves cell viability and reduces hypertrophy in response to stress through autophagy activation. In vivo, we found that Nppa knockout mice undergoing ischemia-reperfusion (I/R) show increased infarct size and reduced autophagy. Reactivation of autophagy by Tat-Beclin D11 limits I/R injury. We also found that the protective effects of NPPA in reducing infarct size are abrogated in the presence of autophagy inhibition. Mechanistically, we found that NPPA stimulates autophagy through the activation of TFEB (transcription factor EB). Our data suggest that NPPA is a novel extracellular regulator of autophagy in the heart.


Assuntos
Fator Natriurético Atrial , Autofagia , Camundongos , Animais , Miócitos Cardíacos , Hipertrofia , Camundongos Knockout
17.
Life (Basel) ; 12(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35629388

RESUMO

The mitochondrial uncoupling protein 2 (UCP2) acts as an anion transporter and as an antioxidant factor able to reduce the reactive oxygen species level. Based on its effects, UCP2 prevents the membrane lipids, proteins, and DNA damage while preserving normal cellular functions. Many variants have been identified within the human UCP2. Some of them were associated with a higher risk of obesity, diabetes and cardiovascular diseases in different populations. UCP2 appears a suitable candidate also for the risk of ischemic stroke. In the current study, we investigated the possible association between few variants of UCP2 (rs659366, rs660339, rs1554995310) and the risk of ischemic stroke in a genetically homogenous cohort of cases and controls selected in Sardinia Island. This population has been previously analysed for other candidate genes. A total of 250 cases of ischemic stroke and 241 controls were enrolled in the study. The allelic/genotypic distribution of the 3 UCP2 variants was characterized and compared among cases and controls. The results of our study confirmed known risk factors for ischemic stroke: age, history of smoking, hypertension, hypercholesterolemia, and atrial fibrillation. No association was found between the 3 UCP2 variants and the risk of ischemic stroke in our Sardinian cohort.

18.
Front Cardiovasc Med ; 9: 921244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711349

RESUMO

Background: Among several potential mechanisms, mitochondrial dysfunction has been proposed to be involved in the pathogenesis of coronary artery disease (CAD). A mitochondrial complex I deficiency severely impairs cardiovascular health and contributes to CAD development. Previous evidence highlighted a key role of NDUFC2, a subunit of complex I, deficiency in the increased occurrence of renal and cerebrovascular damage in an animal model of hypertension, and of juvenile ischemic stroke occurrence in humans. Furthermore, a significant decrease of NDUFC2 mRNA was detected in peripheral blood mononuclear cells from patients experiencing acute coronary syndrome (ACS). The T allele at NDUFC2/rs23117379 variant is known to associate with reduced gene expression and mitochondrial dysfunction. Objective: In the present study we tested the impact of the T/C NDUFC2/rs23117379 variant on occurrence of ACS in a prospective cohort of CAD patients (n = 260). Results: Hypertension, smoking habit, diabetes and hypercholesterolemia were present in a large proportion of patients. Non-ST-elevation myocardial infarction (NSTEMI) represented the most frequent type of ACS (44%, n = 115), followed by ST-elevation myocardial infarction (STEMI) (34%, n = 88) and unstable angina (22%, n = 57). The alleles/genotypes distribution for T/C at NDUFC2/rs23117379 revealed that the TT genotype was associated with a trend toward the development of ACS at an earlier age (TT 61 ± 12, CT 65 ± 12 and CC 66 ± 11 years; p = 0.051 after adjustment for gender, hypertension, smoking habit, diabetes and hypercholesterolemia) and with a significant predictive role for ACS recurrence (hazard ratio [HR]1.671; 95% confidence interval [CI], 1.138-2.472; p = 0.009). Conclusions: Our findings are consistent with a deleterious effect of NDUFC2 deficiency on acute coronary events predisposition and further support a role of the NDUFC2/rs23117379 variant as a genetic cardiovascular risk factor.

19.
Curr Neuropharmacol ; 20(4): 662-674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33882809

RESUMO

Uncoupling protein 2 (UCP2) is a mitochondrial protein that acts as an anion carrier. It is involved in the regulation of several processes, including mitochondrial membrane potential, generation of reactive oxygen species within the inner mitochondrial membrane and calcium homeostasis. UCP2 expression can be regulated at different levels: genetic (gene variants), transcriptional [by peroxisome proliferator-activated receptors (PPARs) and microRNAs], and post-translational. Experimental evidence indicates that activation of UCP2 expression through the AMPK/PPAR-α axis exerts a protective effect toward renal damage and stroke occurrence in an animal model of ischemic stroke (IS) associated with hypertension. UCP2 plays a key role in heart diseases (myocardial infarction and cardiac hypertrophy) and metabolic disorders (obesity and diabetes). In humans, UCP2 genetic variants (-866G/A and Ala55Val) associate with an increased risk of type 2 diabetes mellitus and IS development. Over the last few years, many agents that modulate UCP2 expression have been identified. Some of them are natural compounds of plant origin, such as Brassica oleracea, curcumin, berberine and resveratrol. Other molecules, currently used in clinical practice, include anti-diabetic (gliptin) and chemotherapeutic (doxorubicin and taxol) drugs. This evidence highlights the relevant role of UCP2 for the treatment of a wide range of diseases, which affect the national health systems of Western countries. We will review current knowledge on the physiological and pathological implications of UCP2 with particular regard to cardiovascular and metabolic disorders and will focus on the available therapeutic approaches affecting UCP2 level for the treatment of human diseases.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , Animais , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteína Desacopladora 2/genética
20.
Front Cardiovasc Med ; 9: 1021048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733829

RESUMO

Background: The tricuspid annular plane systolic excursion/systolic pulmonary arterial pressure (TAPSE/sPAP) ratio is an echocardiographic estimation of the right ventricle to pulmonary artery (RV/PA) coupling, with a validated prognostic role in different clinical settings. Systemic sclerosis (SSc) patients without evident cardiovascular involvement frequently display subtle RV impairment. The amino-terminal atrial natriuretic peptide (NT-proANP) plasma level relates to SSc disease progression and mortality. We aimed to assess the prognostic value of the TAPSE/sPAP ratio and its relationship with NT-proANP plasma level in SSc patients without overt cardiovascular involvement. Methods: We retrospectively analysed 70 SSc consecutive patients, with no clinical evidence of cardiovascular involvement or pulmonary hypertension (PH), and 30 healthy controls (HC) in a retrospective, single-centre study. All SSc patients underwent recurrent clinical and echocardiographic assessments and NT-proANP plasma level was assessed at baseline. SSc-related cardiovascular events and deaths were extracted during a 6-year follow-up. The complete work-up for the diagnosis, treatment and management of PH performed along the 6 years of follow-up referred to the 2015 European Society of Cardiology guidelines. Results: Systemic sclerosis patients showed lower TAPSE/sPAP ratio at baseline compared to HC [SSc median value = 0.71 mm/mmHg, (IQR 0.62-0.88) vs. HC median value = 1.00 mm/mmHg, (IQR 0.96-1.05); p < 0.001]. Multivariable Cox analysis revealed TAPSE/sPAP ratio as an independent predictor for SSc-related cardiovascular events [HR = 3.436 (95% CI 1.577-7.448); p = 0.002] and mortality [HR = 3.653 (95% CI 1.712-8.892); p = 0.014]. The value of TAPSE/sPAP ratio < 0.7 mm/mmHg was identified as an optimal cut-off for predicting adverse outcomes (p < 0.001) by receiver operating characteristic (ROC) analyses. NT-proANP level significantly related to TAPSE/sPAP ratio (r = 0.52, p < 0.001). TAPSE/sPAP ratio combined with NT-proANP showed an overall significant prognostic role in this SSc population, confirmed by Kaplan-Meier analysis (Log rank p < 0.001). Conclusion: The TAPSE/sPAP ratio, as an index of RV/PA coupling, is an affordable predictor of cardiovascular events and mortality in SSc and, combined with NT-proANP level, may improve the clinical phenotyping and prognostic stratification of SSc patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA