Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
Neurology ; 102(10): e209326, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669634

RESUMO

BACKGROUND AND OBJECTIVES: Narcolepsy type 1 (NT1) is due to the loss of hypothalamic neurons that produce orexin (ORX), by a suspected immune-mediated process. Rare postmortem studies are available and failed to detect any inflammation in the hypothalamic region, but these brains were collected years after the first symptoms. In vivo studies close to disease onset are lacking. We aimed to explore microglia density in the hypothalamus and thalamus in NT1 compared with controls using [18F]DPA-714 PET and to study in NT1 the relationships between microglia density in the hypothalamus and in other regions of interest (ROIs) with disease duration, severity, and ORX levels. METHODS: Patients with NT1 and controls underwent a standardized clinical evaluation and [18F]DPA-714 PET imaging using a radiolabeled ligand specific to the 18 kDa translocator protein (TSPO). TSPO genotyping determined receptor affinity. Images were processed on peripheral module interface using standard uptake value (SUV) on ROIs: hypothalamus, thalamus, frontal area, cerebellum, and the whole brain. SUV ratios (SUVr) were calculated by normalizing SUV with cerebellum uptake. RESULTS: A total of 41 patients with NT1 (21 adults, 20 children, 10 with recent disease onset <1 year) and 35 controls were included, with no significant difference between groups for [18F]DPA-714 binding (SUV/SUVr) in the hypothalamus and thalamus. Unexpectedly, significantly lower SUVr in the whole brain was found in NT1 compared with controls (0.97 ± 0.06 vs 1.08 ± 0.22, p = 0.04). The same finding between NT1 and controls in the whole brain was observed in those with high or mixed TSPO affinity (p = 0.03 and p = 0.04). Similar trend was observed in the frontal area in NT1 (0.96 ± 0.09 vs 1.09 ± 0.25, p = 0.05). In NT1, no association was found between SUVr in different ROIs and age, disease duration, severity, or ORX levels. DISCUSSION: We found no evidence of in vivo increased microglia density in NT1 compared with controls, even close to disease onset, and even unexpectedly a decrease in the whole brain of these patients. These findings do not support the presence of neuroinflammation in the destruction process of ORX neurons. TRIAL REGISTRATION INFORMATION: ClinicalTrials.org NCT03754348.


Assuntos
Microglia , Narcolepsia , Orexinas , Tomografia por Emissão de Pósitrons , Humanos , Masculino , Feminino , Microglia/metabolismo , Narcolepsia/metabolismo , Narcolepsia/genética , Narcolepsia/diagnóstico por imagem , Orexinas/metabolismo , Adulto , Adulto Jovem , Tálamo/metabolismo , Tálamo/diagnóstico por imagem , Pirazóis , Hipotálamo/metabolismo , Hipotálamo/diagnóstico por imagem , Hipotálamo/patologia , Índice de Gravidade de Doença , Pessoa de Meia-Idade , Pirimidinas , Adolescente , Receptores de GABA/metabolismo , Receptores de GABA/genética
3.
Neurol Neuroimmunol Neuroinflamm ; 11(4): e200263, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38885456

RESUMO

OBJECTIVES: Kleine-Levin syndrome (KLS) is a rare recurrent hypersomnolence disorder associated with cognitive and behavioral disturbances, of unknown origin, but inflammatory mechanisms could be involved. We aimed to explore in vivo microglia activation using [18F]DPA-714 PET imaging in patients with KLS compared with controls, and during symptomatic vs asymptomatic periods. METHODS: Patients with KLS and controls underwent a standardized clinical evaluation and PET imaging, using a radiolabeled ligand specific to the 18 kDa translocator protein. Images were processed on the PMOD (peripheral module) interface using a standard uptake value (SUV). Five regions of interest (ROIs) were analyzed: hypothalamus, thalamus, frontal area, cerebellum, and whole brain. SUV ratios (SUVr) were calculated by normalizing SUV with cerebellum uptake. RESULTS: Images of 17 consecutive patients with KLS (7 during episodes, 10 out of episodes) and 14 controls were analyzed. We found no SUV/SUVr difference between KLS and controls, between patients in and out episodes in all ROIs, and no correlation between SUVr and episode duration at the time of PET scan. No association was found between SUVr and sex, disease duration, or orexin levels. DISCUSSION: Our findings do not support the presence of neuroinflammation in KLS. Further research is needed to identify relevant biomarkers in KLS.


Assuntos
Síndrome de Kleine-Levin , Microglia , Tomografia por Emissão de Pósitrons , Humanos , Síndrome de Kleine-Levin/diagnóstico por imagem , Masculino , Feminino , Microglia/metabolismo , Adulto , Adulto Jovem , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Pessoa de Meia-Idade
4.
J Nucl Med ; 65(2): 264-269, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38212068

RESUMO

Interim analysis of the DOSISPHERE-01 study demonstrated a strong improvement in response and overall survival (OS) on using 90Y-loaded glass microspheres with personalized dosimetry compared with standard dosimetry in patients with nonoperable locally advanced hepatocellular carcinoma. This report sought to provide a long-term analysis of OS. Methods: In this phase II study (ClinicalTrials.gov identifier NCT02582034), treatment was randomly assigned (1:1) with the goal to deliver either at least 205 Gy (if possible >250-300 Gy) to the index lesion in the personalized dosimetry approach (PDA) or 120 ± 20 Gy to the treated volume in the standard dosimetry approach (SDA). The 3-mo response of the index lesion was the primary endpoint, with OS being one of the secondary endpoints. This report is a post hoc long-term analysis of OS. Results: Overall, 60 hepatocellular carcinoma patients with at least 1 lesion larger than 7 cm and more than 30% of hepatic reserve were randomized (intent-to-treat population: PDA, n = 31; SDA, n = 29), with 56 actually treated (modified intent-to-treat population: n = 28 in each arm). The median follow-up for long-term analysis was 65.8 mo (range, 2.1-73.1 mo). Median OS was 24.8 mo and 10.7 mo (hazard ratio [HR], 0.51; 95% CI, 0.29-0.9; P = 0.02) for PDA and SDA, respectively, in the modified intent-to-treat population. Median OS was 22.9 mo for patients with a tumor dose of at least 205 Gy, versus 10.3 mo for those with a tumor dose of less than 205 Gy (HR, 0.42; 95% CI, 0.22-0.81; P = 0.0095), and was 22.9 mo for patients with a perfused liver dose of 150 Gy or higher, versus 10.3 mo for those with a perfused liver dose of less than 150 Gy (HR, 0.42; 95% CI, 0.23-0.75; P = 0.0033). Lastly, median OS was not reached in patients who were secondarily resected (n = 11, 10 in the PDA group and 1 in the SDA group), versus 10.8 mo in those without secondary resection (n = 45) (HR, 0.17; 95% CI, 0.065-0.43; P = 0.0002). Only resected patients displayed favorable long-term OS rates, meaning an OS of more than 50% at 5 y. Conclusion: After longer follow-up, personalized dosimetry sustained a meaningful improvement in OS, which was dramatically improved for patients who were accurately downstaged toward resection, including most portal vein thrombosis patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trombose Venosa , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/patologia , Radiometria , Trombose Venosa/complicações , Radioisótopos de Ítrio/uso terapêutico , Microesferas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA