Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cerebellum ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123901

RESUMO

Cells configure their metabolism in a synchronized and timely manner to meet their energy demands throughout development and adulthood. Transitions of developmental stages are coupled to metabolic shifts, such that glycolysis is highly active during cell proliferation, whereas oxidative phosphorylation prevails in postmitotic states. In the cerebellum, metabolic transitions are remarkable given its protracted developmental timelines. Such distinctive feature, along with its high neuronal density and metabolic demands, make the cerebellum highly vulnerable to metabolic insults. Despite the expansion of metabolomic approaches to uncover biological mechanisms, little is known about the role of metabolism on cerebellar development and maintenance. To illuminate the intricate connections between metabolism, physiology, and cerebellar disorders, we examined here the impact of metabolism on cerebellar growth, maturation, and adulthood through the lens of inborn errors of metabolism.

2.
Am J Hum Genet ; 101(3): 441-450, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28823706

RESUMO

Pontocerebellar hypoplasia (PCH) represents a group of recessive developmental disorders characterized by impaired growth of the pons and cerebellum, which frequently follows a degenerative course. Currently, there are 10 partially overlapping clinical subtypes and 13 genes known mutated in PCH. Here, we report biallelic TBC1D23 mutations in six individuals from four unrelated families manifesting a non-degenerative form of PCH. In addition to reduced volume of pons and cerebellum, affected individuals had microcephaly, psychomotor delay, and ataxia. In zebrafish, tbc1d23 morphants replicated the human phenotype showing hindbrain volume loss. TBC1D23 localized at the trans-Golgi and was regulated by the small GTPases Arl1 and Arl8, suggesting a role in trans-Golgi membrane trafficking. Altogether, this study provides a causative link between TBC1D23 mutations and PCH and suggests a less severe clinical course than other PCH subtypes.


Assuntos
Doenças Cerebelares/genética , Proteínas Ativadoras de GTPase/genética , Homozigoto , Microcefalia/genética , Mutação , Adolescente , Animais , Doenças Cerebelares/patologia , Criança , Pré-Escolar , Feminino , Células HeLa , Humanos , Masculino , Microcefalia/patologia , Linhagem , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
3.
J Inherit Metab Dis ; 42(2): 220-236, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30734319

RESUMO

Most of the energy produced in the brain is dedicated to supporting synaptic transmission. Glucose is the main fuel, providing energy and carbon skeletons to the cells that execute and support synaptic function: neurons and astrocytes, respectively. It is unclear, however, how glucose is provided to and used by these cells under different levels of synaptic activity. It is even more unclear how diseases that impair glucose uptake and oxidation in the brain alter metabolism in neurons and astrocytes, disrupt synaptic activity, and cause neurological dysfunction, of which seizures are one of the most common clinical manifestations. Poor mechanistic understanding of diseases involving synaptic energy metabolism has prevented the expansion of therapeutic options, which, in most cases, are limited to symptomatic treatments. To shed light on the intersections between metabolism, synaptic transmission, and neuronal excitability, we briefly review current knowledge of compartmentalized metabolism in neurons and astrocytes, the biochemical pathways that fuel synaptic transmission at resting and active states, and the mechanisms by which disorders of brain glucose metabolism disrupt neuronal excitability and synaptic function and cause neurological disease in the form of epilepsy.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético , Epilepsia/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Animais , Astrócitos/metabolismo , Glucose/metabolismo , Humanos , Oxirredução , Convulsões/metabolismo , Sinapses/metabolismo
4.
J Med Genet ; 55(1): 48-54, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28626029

RESUMO

BACKGROUND: Transport protein particle (TRAPP) is a multisubunit complex that regulates membrane trafficking through the Golgi apparatus. The clinical phenotype associated with mutations in various TRAPP subunits has allowed elucidation of their functions in specific tissues. The role of some subunits in human disease, however, has not been fully established, and their functions remain uncertain. OBJECTIVE: We aimed to expand the range of neurodevelopmental disorders associated with mutations in TRAPP subunits by exome sequencing of consanguineous families. METHODS: Linkage and homozygosity mapping and candidate gene analysis were used to identify homozygous mutations in families. Patient fibroblasts were used to study splicing defect and zebrafish to model the disease. RESULTS: We identified six individuals from three unrelated families with a founder homozygous splice mutation in TRAPPC6B, encoding a core subunit of the complex TRAPP I. Patients manifested a neurodevelopmental disorder characterised by microcephaly, epilepsy and autistic features, and showed splicing defect. Zebrafish trappc6b morphants replicated the human phenotype, displaying decreased head size and neuronal hyperexcitability, leading to a lower seizure threshold. CONCLUSION: This study provides clinical and functional evidence of the role of TRAPPC6B in brain development and function.


Assuntos
Transtorno Autístico/genética , Epilepsia/genética , Efeito Fundador , Estudos de Associação Genética , Microcefalia/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Transporte Vesicular/genética , Animais , Transtorno Autístico/complicações , Epilepsia/complicações , Homozigoto , Humanos , Microcefalia/complicações , Fenótipo , Peixe-Zebra
5.
J Med Genet ; 54(6): 399-403, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28280135

RESUMO

BACKGROUND: Microcephaly with nephrotic syndrome is a rare co-occurrence, constituting the Galloway-Mowat syndrome (GAMOS), caused by mutations in WDR73 (OMIM: 616144). However, not all patients harbour demonstrable WDR73 deleterious variants, suggesting that there are other yet unidentified factors contributing to GAMOS aetiology. METHODS: Autozygosity mapping and candidate analysis was used to identify deleterious variants in consanguineous families. Analysis of patient fibroblasts was used to study splicing and alterations in cellular function. RESULTS: In two consanguineous families with five affected individuals from Turkey with a GAMOS-like presentation, we identified a shared homozygous variant leading to partial exon 4 skipping in nucleoporin, 107-KD (NUP107). The founder mutation was associated with concomitant reduction in NUP107 protein and in the obligate binding partner NUP133 protein, as well as density of nuclear pores in patient cells. CONCLUSION: Recently, NUP107 was suggested as a candidate in a family with nephrotic syndrome and developmental delay. Other NUP107-reported cases had isolated renal phenotypes. With the addition of these individuals, we implicate an allele-specific critical role for NUP107 in the regulation of brain growth and a GAMOS-like presentation.


Assuntos
Hérnia Hiatal/genética , Microcefalia/genética , Mutação/genética , Nefrose/genética , Síndrome Nefrótica/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Esteroides/metabolismo , Adolescente , Criança , Deficiências do Desenvolvimento/genética , Feminino , Homozigoto , Humanos , Lactente , Rim/metabolismo , Masculino , Linhagem , Fenótipo , Proteínas/genética , Turquia
6.
Ann Neurol ; 80(1): 59-70, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27130255

RESUMO

OBJECTIVE: A study was undertaken to characterize the clinical features of the newly described hypomyelinating leukodystrophy type 10 with microcephaly. This is an autosomal recessive disorder mapped to chromosome 1q42.12 due to mutations in the PYCR2 gene, encoding an enzyme involved in proline synthesis in mitochondria. METHODS: From several international clinics, 11 consanguineous families were identified with PYCR2 mutations by whole exome or targeted sequencing, with detailed clinical and radiological phenotyping. Selective mutations from patients were tested for effect on protein function. RESULTS: The characteristic clinical presentation of patients with PYCR2 mutations included failure to thrive, microcephaly, craniofacial dysmorphism, progressive psychomotor disability, hyperkinetic movements, and axial hypotonia with variable appendicular spasticity. Patients did not survive beyond the first decade of life. Brain magnetic resonance imaging showed global brain atrophy and white matter T2 hyperintensities. Routine serum metabolic profiles were unremarkable. Both nonsense and missense mutations were identified, which impaired protein multimerization. INTERPRETATION: PYCR2-related syndrome represents a clinically recognizable condition in which PYCR2 mutations lead to protein dysfunction, not detectable on routine biochemical assessments. Mutations predict a poor outcome, probably as a result of impaired mitochondrial function. Ann Neurol 2016;80:59-70.


Assuntos
Insuficiência de Crescimento/complicações , Insuficiência de Crescimento/genética , Microcefalia/complicações , Microcefalia/genética , Pirrolina Carboxilato Redutases/genética , Adolescente , Criança , Pré-Escolar , Códon sem Sentido , Exoma/genética , Feminino , Fibroblastos , Expressão Gênica , Predisposição Genética para Doença/genética , Genótipo , Humanos , Lactente , Masculino , Microcefalia/diagnóstico , Mutação de Sentido Incorreto , Fenótipo , Cultura Primária de Células , Pirrolina Carboxilato Redutases/biossíntese , Síndrome , Transfecção , Adulto Jovem
7.
J Neurochem ; 132(3): 301-12, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25314677

RESUMO

The mechanistic link of ketosis to neuroprotection under certain pathological conditions continues to be explored. We investigated whether chronic ketosis induced by ketogenic diet results in the partitioning of ketone bodies toward oxidative metabolism in brain. We hypothesized that diet-induced ketosis results in increased shunting of ketone bodies toward citric acid cycle and amino acids with decreased carbon shunting from glucose. Rats were fed standard (STD) or ketogenic (KG) diets for 3.5 weeks and then infused with [U-(13) C]glucose or [U-(13) C]acetoacetate tracers. Concentrations and (13) C-labeling pattern of citric acid cycle intermediates and amino acids were analyzed from brain homogenates using stable isotopomer mass spectrometry analysis. The contribution of [U-(13) C]glucose to acetyl-CoA and amino acids decreased by ~ 30% in the KG group versus STD, whereas [U-(13) C]acetoacetate contributions were more than two-fold higher. The concentration of GABA remained constant across groups; however, the (13) C labeling of GABA was markedly increased in the KG group infused with [U-(13) C]acetoacetate compared to STD. This study reveals that there is a significant contribution of ketone bodies to oxidative metabolism and GABA in diet-induced ketosis. We propose that this represents a fundamental mechanism of neuroprotection under pathological conditions.


Assuntos
Química Encefálica , Carbono/metabolismo , Dieta Cetogênica , Glucose/metabolismo , Acidemia Propiônica/metabolismo , Acetoacetatos/metabolismo , Animais , Metabolismo Energético , Corpos Cetônicos/metabolismo , Masculino , Oxirredução , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/biossíntese
8.
J Neurochem ; 132(1): 99-109, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25231025

RESUMO

The (13) C-labeling patterns in glutamate and glutamine from brain tissue are quite different after infusion of a mixture of (13) C-enriched glucose and acetate. Two processes contribute to this observation, oxidation of acetate by astrocytes but not neurons, and preferential incorporation of α-ketoglutarate into glutamate in neurons, and incorporation of α-ketoglutarate into glutamine in astrocytes. The acetate:glucose ratio, introduced previously for analysis of a single (13) C NMR spectrum, provides a useful index of acetate and glucose oxidation in the brain tissue. However, quantitation of relative substrate oxidation at the cell compartment level has not been reported. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes, based on the standard assumption that neurons do not oxidize acetate. Mice were infused with [1,2-(13) C]acetate and [1,6-(13) C]glucose, and proton decoupled (13) C NMR spectra of cortex extracts were acquired. A fit of those spectra to the model indicated that (13) C-labeled acetate and glucose contributed approximately equally to acetyl-CoA (0.96) in astrocytes. As this method relies on a single (13) C NMR spectrum, it can be readily applied to multiple physiologic and pathologic conditions. Differences in (13) C labeling of brain glutamate and glutamine have been attributed to metabolic compartmentation. The acetate:glucose ratio, introduced for description of a (13) C NMR (nuclear magnetic resonance) spectrum, is an index of glucose and acetate oxidation in brain tissue. A simple mathematical method is presented to quantify the ratio of acetate-to-glucose oxidation in astrocytes from a single NMR spectrum. As kinetic analysis is not required, the method is readily applicable to analysis of tissue extracts. α-KG = alpha-ketoglutarate; CAC = citric acid cycle; GLN = glutamine; GLU = glutamate.


Assuntos
Acetatos/metabolismo , Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Glucose/metabolismo , Acetilcoenzima A/metabolismo , Animais , Astrócitos/química , Córtex Cerebral/química , Córtex Cerebral/citologia , Feminino , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/química , Neurônios/metabolismo , Oxirredução
9.
Epilepsia ; 55(7): 970-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24861491

RESUMO

Focal cortical dysplasias (FCDs) constitute a prevalent cause of intractable epilepsy in children, and is one of the leading conditions requiring epilepsy surgery. Despite recent advances in the cellular and molecular biology of these conditions, the pathogenetic mechanisms of FCDs remain largely unknown. The purpose if this work is to review the molecular underpinnings of FCDs and to highlight potential therapeutic targets. A systematic review of the literature regarding the histologic, molecular, and electrophysiologic aspects of FCDs was conducted. Disruption of the mammalian target of rapamycin (mTOR) signaling comprises a common pathway underlying the structural and electrical disturbances of some FCDs. Other mechanisms such as viral infections, prematurity, head trauma, and brain tumors are also posited. mTOR inhibitors (i.e., rapamycin) have shown positive results on seizure management in animal models and in a small cohort of patients with FCD. Encouraging progress has been achieved on the molecular and electrophysiologic basis of constitutive cells in the dysplastic tissue. Despite the promising results of mTOR inhibitors, large-scale randomized trials are in need to evaluate their efficacy and side effects, along with additional mechanistic studies for the development of novel, molecular-based diagnostic and therapeutic approaches.


Assuntos
Epilepsia/epidemiologia , Epilepsia/genética , Malformações do Desenvolvimento Cortical/epidemiologia , Malformações do Desenvolvimento Cortical/genética , Transdução de Sinais/genética , Animais , Anticonvulsivantes/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Epilepsia/tratamento farmacológico , Marcação de Genes/métodos , Humanos , Malformações do Desenvolvimento Cortical/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética
10.
Cell Metab ; 36(6): 1394-1410.e12, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838644

RESUMO

A vexing problem in mitochondrial medicine is our limited capacity to evaluate the extent of brain disease in vivo. This limitation has hindered our understanding of the mechanisms that underlie the imaging phenotype in the brain of patients with mitochondrial diseases and our capacity to identify new biomarkers and therapeutic targets. Using comprehensive imaging, we analyzed the metabolic network that drives the brain structural and metabolic features of a mouse model of pyruvate dehydrogenase deficiency (PDHD). As the disease progressed in this animal, in vivo brain glucose uptake and glycolysis increased. Propionate served as a major anaplerotic substrate, predominantly metabolized by glial cells. A combination of propionate and a ketogenic diet extended lifespan, improved neuropathology, and ameliorated motor deficits in these animals. Together, intermediary metabolism is quite distinct in the PDHD brain-it plays a key role in the imaging phenotype, and it may uncover new treatments for this condition.


Assuntos
Encéfalo , Glucose , Propionatos , Doença da Deficiência do Complexo de Piruvato Desidrogenase , Animais , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Glucose/metabolismo , Propionatos/metabolismo , Camundongos , Dieta Cetogênica , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Masculino , Glicólise
11.
Neurobiol Dis ; 48(1): 92-101, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22683290

RESUMO

Brain glucose supplies most of the carbon required for acetyl-coenzyme A (acetyl-CoA) generation (an important step for myelin synthesis) and for neurotransmitter production via further metabolism of acetyl-CoA in the tricarboxylic acid (TCA) cycle. However, it is not known whether reduced brain glucose transporter type I (GLUT-1) activity, the hallmark of the GLUT-1 deficiency (G1D) syndrome, leads to acetyl-CoA, TCA or neurotransmitter depletion. This question is relevant because, in its most common form in man, G1D is associated with cerebral hypomyelination (manifested as microcephaly) and epilepsy, suggestive of acetyl-CoA depletion and neurotransmitter dysfunction, respectively. Yet, brain metabolism in G1D remains underexplored both theoretically and experimentally, partly because computational models of limited brain glucose transport are subordinate to metabolic assumptions and partly because current hemizygous G1D mouse models manifest a mild phenotype not easily amenable to investigation. In contrast, adult antisense G1D mice replicate the human phenotype of spontaneous epilepsy associated with robust thalamocortical electrical oscillations. Additionally, and in consonance with human metabolic imaging observations, thalamus and cerebral cortex display the lowest GLUT-1 expression and glucose uptake in the mutant mouse. This depletion of brain glucose is associated with diminished plasma fatty acids and elevated ketone body levels, and with decreased brain acetyl-CoA and fatty acid contents, consistent with brain ketone body consumption and with stimulation of brain beta-oxidation and/or diminished cerebral lipid synthesis. In contrast with other epilepsies, astrocyte glutamine synthetase expression, cerebral TCA cycle intermediates, amino acid and amine neurotransmitter contents are also intact in G1D. The data suggest that the TCA cycle is preserved in G1D because reduced glycolysis and acetyl-CoA formation can be balanced by enhanced ketone body utilization. These results are incompatible with global cerebral energy failure or with neurotransmitter depletion as responsible for epilepsy in G1D and point to an unknown mechanism by which glycolysis critically regulates cortical excitability.


Assuntos
Encéfalo/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Epilepsia/metabolismo , Transportador de Glucose Tipo 1/deficiência , Animais , Encéfalo/fisiopatologia , Erros Inatos do Metabolismo dos Carboidratos/fisiopatologia , Modelos Animais de Doenças , Dopamina/metabolismo , Epilepsia/fisiopatologia , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Masculino , Camundongos , Proteínas de Transporte de Monossacarídeos/deficiência , Proteínas de Transporte de Monossacarídeos/metabolismo , Serotonina/metabolismo
12.
NMR Biomed ; 25(11): 1234-44, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22419606

RESUMO

Glioblastomas and brain metastases demonstrate avid uptake of 2-[(18) F]fluoro-2-deoxyglucose by positron emission tomography and display perturbations of intracellular metabolite pools by (1) H MRS. These observations suggest that metabolic reprogramming contributes to brain tumor growth in vivo. The Warburg effect, excess metabolism of glucose to lactate in the presence of oxygen, is a hallmark of cancer cells in culture. 2-[(18) F]Fluoro-2-deoxyglucose-positive tumors are assumed to metabolize glucose in a similar manner, with high rates of lactate formation relative to mitochondrial glucose oxidation, but few studies have specifically examined the metabolic fates of glucose in vivo. In particular, the capacity of human brain cancers to oxidize glucose in the tricarboxylic acid cycle is unknown. Here, we studied the metabolism of human brain tumors in situ. [U-(13) C]Glucose (uniformly labeled glucose, i.e. d-glucose labeled with (13) C in all six carbons) was infused during surgical resection, and tumor samples were subsequently subjected to (13) C NMR spectroscopy. The analysis of tumor metabolites revealed lactate production, as expected. We also determined that pyruvate dehydrogenase, turnover of the tricarboxylic acid cycle, anaplerosis and de novo glutamine and glycine synthesis contributed significantly to the ultimate disposition of glucose carbon. Surprisingly, less than 50% of the acetyl-coenzyme A pool was derived from blood-borne glucose, suggesting that additional substrates contribute to tumor bioenergetics. This study illustrates a convenient approach that capitalizes on the high information content of (13) C NMR spectroscopy and enables the analysis of intermediary metabolism in diverse cancers growing in their native microenvironment.


Assuntos
Neoplasias Encefálicas/metabolismo , Glucose/metabolismo , Acetilcoenzima A/metabolismo , Glicemia/metabolismo , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Isótopos de Carbono , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo do Ácido Cítrico , Feminino , Glioblastoma/sangue , Glioblastoma/metabolismo , Glicina/biossíntese , Glicólise , Humanos , Oxirredução
13.
NMR Biomed ; 25(10): 1177-86, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22383401

RESUMO

It has been hypothesized that increased flux through the pentose phosphate pathway (PPP) is required to support the metabolic demands of rapid malignant cell growth. Using orthotopic mouse models of human glioblastoma (GBM) and renal cell carcinoma metastatic to brain, we estimated the activity of the PPP relative to glycolysis by infusing [1,2-(13) C(2) ]glucose. The [3-(13) C]lactate/[2,3-(13) C(2) ]lactate ratio was similar for both the GBM and brain metastasis and their respective surrounding brains (GBM, 0.197 ± 0.011 and 0.195 ± 0.033, respectively (p = 1); metastasis: 0.126 and 0.119 ± 0.033, respectively). This suggests that the rate of glycolysis is significantly greater than the PPP flux in these tumors, and that the PPP flux into the lactate pool is similar in both tumors. Remarkably, (13) C-(13) C coupling was observed in molecules derived from Krebs cycle intermediates in both tumor types, denoting glucose oxidation. In the renal cell carcinoma, in contrast with GBM, (13) C multiplets of γ-aminobutyric acid (GABA) differed from its precursor glutamate, suggesting that GABA did not derive from a common glutamate precursor pool. In addition, the orthotopic renal tumor, the patient's primary renal mass and brain metastasis were all strongly immunopositive for the 67-kDa isoform of glutamate decarboxylase, as were 84% of tumors on a renal cell carcinoma tissue microarray of the same histology, suggesting that GABA synthesis is cell autonomous in at least a subset of renal cell carcinomas. Taken together, these data demonstrate that (13) C-labeled glucose can be used in orthotopic mouse models to study tumor metabolism in vivo and to ascertain new metabolic targets for cancer diagnosis and therapy.


Assuntos
Neoplasias Encefálicas/metabolismo , Ciclo do Ácido Cítrico , Glucose/metabolismo , Glicólise , Via de Pentose Fosfato , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/patologia , Modelos Animais de Doenças , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Glutamato Descarboxilase/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Neoplasias Renais/enzimologia , Neoplasias Renais/patologia , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Tomografia por Emissão de Pósitrons , Ácido gama-Aminobutírico/metabolismo
14.
Sci Transl Med ; 14(665): eabn2956, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197967

RESUMO

Individuals with glucose transporter type I deficiency (G1D) habitually experience nutrient-responsive epilepsy associated with decreased brain glucose. However, the mechanistic association between blood glucose concentration and brain excitability in the context of G1D remains to be elucidated. Electroencephalography (EEG) in G1D individuals revealed nutrition time-dependent seizure oscillations often associated with preserved volition despite electrographic generalization and uniform average oscillation duration and periodicity, suggesting increased facilitation of an underlying neural loop circuit. Nonlinear EEG ictal source localization analysis and simultaneous EEG/functional magnetic resonance imaging converged on the thalamus-sensorimotor cortex as one potential circuit, and 18F-deoxyglucose positron emission tomography (18F-DG-PET) illustrated decreased glucose accumulation in this circuit. This pattern, reflected in a decreased thalamic to striatal 18F signal ratio, can aid with the PET imaging diagnosis of the disorder, whereas the absence of noticeable ictal behavioral changes challenges the postulated requirement for normal thalamocortical activity during consciousness. In G1D mice, 18F-DG-PET and mass spectrometry also revealed decreased brain glucose and glycogen, but preserved tricarboxylic acid cycle intermediates, indicating no overall energy metabolism failure. In brain slices from these animals, synaptic inhibition of cortical pyramidal neurons and thalamic relay neurons was decreased, and neuronal disinhibition was mitigated by metabolic sources of carbon; tonic-clonic seizures were also suppressed by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor inhibition. These results pose G1D as a thalamocortical synaptic disinhibition disease associated with increased glucose-dependent neuronal excitability, possibly in relation to reduced glycogen. Together with findings in other metabolic defects, inhibitory neuron dysfunction is emerging as a modulable mechanism of hyperexcitability.


Assuntos
Glicemia , Estado de Consciência , Animais , Erros Inatos do Metabolismo dos Carboidratos , Carbono/metabolismo , Desoxiglucose , Eletroencefalografia , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicogênio/metabolismo , Camundongos , Proteínas de Transporte de Monossacarídeos/deficiência , Convulsões , Tálamo/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
15.
Mol Genet Metab ; 101(1): 9-17, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20598931

RESUMO

Pyruvate carboxylase (PC) is a regulated mitochondrial enzyme that catalyzes the conversion of pyruvate to oxaloacetate, a critical transition that replenishes citric acid cycle intermediates and facilitates other biosynthetic reactions that drive anabolism. Its deficiency causes multiorgan metabolic imbalance that predominantly manifests with lactic acidemia and neurological dysfunction at an early age. Three clinical forms of PC deficiency have been identified: an infantile form (Type A), a severe neonatal form (Type B), and a benign form (Type C), all of which exhibit clinical or biochemical correlates of impaired anaplerosis. There is no effective treatment for these patients and most, except those affected by the benign form, die in early life. We review the physiology of this enzyme and dissect the major clinical, biochemical, and genetic aspects of its dysfunction, emphasizing features that distinguish PC deficiency from other causes of lactic acidemia that render PC deficiency potentially treatable using novel interventions capable of enhancing anaplerosis.


Assuntos
Doença da Deficiência de Piruvato Carboxilase/metabolismo , Piruvato Carboxilase/genética , Animais , Carbono/metabolismo , Humanos , Ácido Oxaloacético/metabolismo , Fenótipo , Piruvato Carboxilase/metabolismo , Ácido Pirúvico/metabolismo
16.
Sci Transl Med ; 11(480)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787166

RESUMO

Glucose is the ultimate substrate for most brain activities that use carbon, including synthesis of the neurotransmitters glutamate and γ-aminobutyric acid via mitochondrial tricarboxylic acid (TCA) cycle. Brain metabolism and neuronal excitability are thus interdependent. However, the principles that govern their relationship are not always intuitive because heritable defects of brain glucose metabolism are associated with the paradoxical coexistence, in the same individual, of episodic neuronal hyperexcitation (seizures) with reduced basal cerebral electrical activity. One such prototypic disorder is pyruvate dehydrogenase (PDH) deficiency (PDHD). PDH is central to metabolism because it steers most of the glucose-derived flux into the TCA cycle. To better understand the pathophysiology of PDHD, we generated mice with brain-specific reduced PDH activity that paralleled salient human disease features, including cerebral hypotrophy, decreased amplitude electroencephalogram (EEG), and epilepsy. The mice exhibited reductions in cerebral TCA cycle flux, glutamate content, spontaneous, and electrically evoked in vivo cortical field potentials and gamma EEG oscillation amplitude. Episodic decreases in gamma oscillations preceded most epileptiform discharges, facilitating their prediction. Fast-spiking neuron excitability was decreased in brain slices, contributing to in vivo action potential burst prolongation after whisker pad stimulation. These features were partially reversed after systemic administration of acetate, which augmented cerebral TCA cycle flux, glutamate-dependent synaptic transmission, inhibition and gamma oscillations, and reduced epileptiform discharge duration. Thus, our results suggest that dysfunctional excitability in PDHD is consequent to reduced oxidative flux, which leads to decreased neuronal activation and impaired inhibition, and can be mitigated by an alternative metabolic substrate.


Assuntos
Encéfalo/metabolismo , Neurônios/fisiologia , Doença da Deficiência do Complexo de Piruvato Desidrogenase/metabolismo , Doença da Deficiência do Complexo de Piruvato Desidrogenase/fisiopatologia , Acetatos/metabolismo , Algoritmos , Animais , Isótopos de Carbono , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Potenciais Evocados , Ritmo Gama , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Aprendizado de Máquina , Camundongos , Inibição Neural , Convulsões/metabolismo , Convulsões/fisiopatologia , Vibrissas
17.
FEBS Lett ; 591(21): 3548-3554, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28963851

RESUMO

Malignant brain tumors are known to utilize acetate as an alternate carbon source in the citric acid cycle for their bioenergetics. 13 C NMR-based isotopomer analysis has been used to measure turnover of 13 C-acetate carbons into glutamate and glutamine pools in tumors. Plasma from the patients infused with [1,2-13 C]acetate further revealed the presence of 13 C isotopomers of glutamine, glucose, and lactate in the circulation that were generated due to metabolism of [1,2-13 C]acetate by peripheral organs. In the tumor cells, [4-13 C] and [3,4-13 C]glutamate and glutamine isotopomers were generated from blood-borne 13 C-labeled glucose and lactate which were formed due to [1,2-13 C[acetate metabolism of peripheral tissues. [4,5-13 C] and [3,4,5-13 C]glutamate and glutamine isotopomers were produced from [1,2-13 C]acetyl-CoA that was derived from direct oxidation of [1,2-13 C] acetate in the tumor. Major portion of C4 13 C fractional enrichment of glutamate (93.3 ± 0.02%) and glutamine (90.9 ± 0.03%) were derived from [1,2-13 C]acetate-derived acetyl-CoA.


Assuntos
Neoplasias Encefálicas/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Acetatos/administração & dosagem , Acetatos/farmacocinética , Neoplasias Encefálicas/diagnóstico por imagem , Isótopos de Carbono/farmacocinética , Feminino , Humanos , Masculino
18.
Nat Genet ; 49(3): 457-464, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28092684

RESUMO

Deadenylases are best known for degrading the poly(A) tail during mRNA decay. The deadenylase family has expanded throughout evolution and, in mammals, consists of 12 Mg2+-dependent 3'-end RNases with substrate specificity that is mostly unknown. Pontocerebellar hypoplasia type 7 (PCH7) is a unique recessive syndrome characterized by neurodegeneration and ambiguous genitalia. We studied 12 human families with PCH7, uncovering biallelic, loss-of-function mutations in TOE1, which encodes an unconventional deadenylase. toe1-morphant zebrafish displayed midbrain and hindbrain degeneration, modeling PCH-like structural defects in vivo. Surprisingly, we found that TOE1 associated with small nuclear RNAs (snRNAs) incompletely processed spliceosomal. These pre-snRNAs contained 3' genome-encoded tails often followed by post-transcriptionally added adenosines. Human cells with reduced levels of TOE1 accumulated 3'-end-extended pre-snRNAs, and the immunoisolated TOE1 complex was sufficient for 3'-end maturation of snRNAs. Our findings identify the cause of a neurodegenerative syndrome linked to snRNA maturation and uncover a key factor involved in the processing of snRNA 3' ends.


Assuntos
Doenças Cerebelares/genética , Exonucleases/genética , Mutação/genética , Proteínas Nucleares/genética , RNA Nuclear Pequeno/genética , Alelos , Animais , Feminino , Humanos , Masculino , Camundongos , Doenças Neurodegenerativas/genética , RNA Mensageiro/genética , Spliceossomos/genética , Peixe-Zebra
19.
Pediatr Neurol ; 51(1): 100-3, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24938142

RESUMO

INTRODUCTION: We present a developmentally appropriate adolescent boy who presented with upper and lower extremity glove-and-stocking paresthesias, distal weakness, vertigo, high-pitched voice, inattention, ataxia, and binocular diplopia after a voluntary 59-kg weight loss over 5 months. CLINICAL INVESTIGATIONS: Extensive investigations revealed serum thiamine levels <2 nmol/L. Brain magnetic resonance imaging revealed symmetric abnormal T2 prolongation of the mammillary bodies. Nerve conduction studies were consistent with axonal, length-dependent polyneuropathy. Together, these findings were diagnostic for peripheral polyneuropathy and Wernicke encephalopathy secondary to thiamine deficiency. CONCLUSION: This patient illustrates that eating disorders can be an uncommon cause of rapidly progressive paresthesias, weakness, and neurological decline due to thiamine deficiency.


Assuntos
Anorexia Nervosa/complicações , Doenças do Sistema Nervoso Periférico/etiologia , Deficiência de Tiamina/complicações , Encefalopatia de Wernicke/etiologia , Adolescente , Extremidades/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Corpos Mamilares/patologia , Tiamina/sangue
20.
JAMA Neurol ; 71(10): 1255-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25110966

RESUMO

IMPORTANCE: Disorders of brain metabolism are multiform in their mechanisms and manifestations, many of which remain insufficiently understood and are thus similarly treated. Glucose transporter type I deficiency (G1D) is commonly associated with seizures and with electrographic spike-waves. The G1D syndrome has long been attributed to energy (ie, adenosine triphosphate synthetic) failure such as that consequent to tricarboxylic acid (TCA) cycle intermediate depletion. Indeed, glucose and other substrates generate TCAs via anaplerosis. However, TCAs are preserved in murine G1D, rendering energy-failure inferences premature and suggesting a different hypothesis, also grounded on our work, that consumption of alternate TCA precursors is stimulated and may be detrimental. Second, common ketogenic diets lead to a therapeutically counterintuitive reduction in blood glucose available to the G1D brain and prove ineffective in one-third of patients. OBJECTIVE: To identify the most helpful outcomes for treatment evaluation and to uphold (rather than diminish) blood glucose concentration and stimulate the TCA cycle, including anaplerosis, in G1D using the medium-chain, food-grade triglyceride triheptanoin. DESIGN, SETTING, AND PARTICIPANTS: Unsponsored, open-label cases series conducted in an academic setting. Fourteen children and adults with G1D who were not receiving a ketogenic diet were selected on a first-come, first-enrolled basis. INTERVENTION: Supplementation of the regular diet with food-grade triheptanoin. MAIN OUTCOMES AND MEASURES: First, we show that, regardless of electroencephalographic spike-waves, most seizures are rarely visible, such that perceptions by patients or others are inadequate for treatment evaluation. Thus, we used quantitative electroencephalographic, neuropsychological, blood analytical, and magnetic resonance imaging cerebral metabolic rate measurements. RESULTS: One participant (7%) did not manifest spike-waves; however, spike-waves promptly decreased by 70% (P = .001) in the other participants after consumption of triheptanoin. In addition, the neuropsychological performance and cerebral metabolic rate increased in most patients. Eleven patients (78%) had no adverse effects after prolonged use of triheptanoin. Three patients (21%) experienced gastrointestinal symptoms, and 1 (7%) discontinued the use of triheptanoin. CONCLUSIONS AND RELEVANCE: Triheptanoin can favorably influence cardinal aspects of neural function in G1D. In addition, our outcome measures constitute an important framework for the evaluation of therapies for encephalopathies associated with impaired intermediary metabolism.


Assuntos
Glicemia/metabolismo , Encéfalo/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/tratamento farmacológico , Ciclo do Ácido Cítrico , Suplementos Nutricionais , Proteínas de Transporte de Monossacarídeos/deficiência , Triglicerídeos/uso terapêutico , Adolescente , Adulto , Encéfalo/fisiopatologia , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Feminino , Glucose/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas de Transporte de Monossacarídeos/metabolismo , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA