Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
CA Cancer J Clin ; 72(5): 454-489, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35708940

RESUMO

Brain metastases are a challenging manifestation of renal cell carcinoma. We have a limited understanding of brain metastasis tumor and immune biology, drivers of resistance to systemic treatment, and their overall poor prognosis. Current data support a multimodal treatment strategy with radiation treatment and/or surgery. Nonetheless, the optimal approach for the management of brain metastases from renal cell carcinoma remains unclear. To improve patient care, the authors sought to standardize practical management strategies. They performed an unstructured literature review and elaborated on the current management strategies through an international group of experts from different disciplines assembled via the network of the International Kidney Cancer Coalition. Experts from different disciplines were administered a survey to answer questions related to current challenges and unmet patient needs. On the basis of the integrated approach of literature review and survey study results, the authors built algorithms for the management of single and multiple brain metastases in patients with renal cell carcinoma. The literature review, consensus statements, and algorithms presented in this report can serve as a framework guiding treatment decisions for patients. CA Cancer J Clin. 2022;72:454-489.


Assuntos
Neoplasias Encefálicas , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Encefálicas/terapia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Terapia Combinada , Humanos , Neoplasias Renais/patologia , Neoplasias Renais/terapia
2.
N Engl J Med ; 384(17): 1613-1622, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33838625

RESUMO

BACKGROUND: Outcomes in children and adolescents with recurrent or progressive high-grade glioma are poor, with a historical median overall survival of 5.6 months. Pediatric high-grade gliomas are largely immunologically silent or "cold," with few tumor-infiltrating lymphocytes. Preclinically, pediatric brain tumors are highly sensitive to oncolytic virotherapy with genetically engineered herpes simplex virus type 1 (HSV-1) G207, which lacks genes essential for replication in normal brain tissue. METHODS: We conducted a phase 1 trial of G207, which used a 3+3 design with four dose cohorts of children and adolescents with biopsy-confirmed recurrent or progressive supratentorial brain tumors. Patients underwent stereotactic placement of up to four intratumoral catheters. The following day, they received G207 (107 or 108 plaque-forming units) by controlled-rate infusion over a period of 6 hours. Cohorts 3 and 4 received radiation (5 Gy) to the gross tumor volume within 24 hours after G207 administration. Viral shedding from saliva, conjunctiva, and blood was assessed by culture and polymerase-chain-reaction assay. Matched pre- and post-treatment tissue samples were examined for tumor-infiltrating lymphocytes by immunohistologic analysis. RESULTS: Twelve patients 7 to 18 years of age with high-grade glioma received G207. No dose-limiting toxic effects or serious adverse events were attributed to G207 by the investigators. Twenty grade 1 adverse events were possibly related to G207. No virus shedding was detected. Radiographic, neuropathological, or clinical responses were seen in 11 patients. The median overall survival was 12.2 months (95% confidence interval, 8.0 to 16.4); as of June 5, 2020, a total of 4 of 11 patients were still alive 18 months after G207 treatment. G207 markedly increased the number of tumor-infiltrating lymphocytes. CONCLUSIONS: Intratumoral G207 alone and with radiation had an acceptable adverse-event profile with evidence of responses in patients with recurrent or progressive pediatric high-grade glioma. G207 converted immunologically "cold" tumors to "hot." (Supported by the Food and Drug Administration and others; ClinicalTrials.gov number, NCT02457845.).


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Terapia Viral Oncolítica , Adolescente , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Criança , Pré-Escolar , Terapia Combinada , Feminino , Glioma/diagnóstico por imagem , Glioma/patologia , Glioma/radioterapia , Humanos , Estimativa de Kaplan-Meier , Células Matadoras Naturais , Contagem de Leucócitos , Masculino , Terapia Viral Oncolítica/efeitos adversos , Linfócitos T
3.
Cancer Immunol Immunother ; 73(11): 221, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235531

RESUMO

BACKGROUND: Neuroblastoma is the most common extracranial solid tumor in children and accounts for 15% of pediatric cancer related deaths. Targeting neuroblastoma with immunotherapies has proven challenging due to a paucity of immune cells in the tumor microenvironment and the release of immunosuppressive cytokines by neuroblastoma tumor cells. We hypothesized that combining an oncolytic Herpes Simplex Virus (oHSV) with natural killer (NK) cells might overcome these barriers and incite tumor cell death. METHODS: We utilized MYCN amplified and non-amplified neuroblastoma cell lines, the IL-12 expressing oHSV, M002, and the human NK cell line, NK-92 MI. We assessed the cytotoxicity of NK cells against neuroblastoma with and without M002 infection, the effects of M002 on NK cell priming, and the impact of M002 and priming on the migratory capacity and CD107a expression of NK cells. To test clinical applicability, we then investigated the effects of M002 and NK cells on neuroblastoma in vivo. RESULTS: NK cells were more attracted to neuroblastoma cells that were infected with M002. There was an increase in neuroblastoma cell death with the combination treatment of M002 and NK cells both in vitro and in vivo. Priming the NK cells enhanced their cytotoxicity, migratory capacity and CD107a expression. CONCLUSIONS: To the best of our knowledge, these investigations are the first to demonstrate the effects of an oncolytic virus combined with self-maintaining NK cells in neuroblastoma and the priming effect of neuroblastoma on NK cells. The current studies provide a deeper understanding of the relation between NK cells and neuroblastoma and these data suggest that oHSV increases NK cell cytotoxicity towards neuroblastoma.


Assuntos
Células Matadoras Naturais , Neuroblastoma , Terapia Viral Oncolítica , Neuroblastoma/terapia , Neuroblastoma/imunologia , Células Matadoras Naturais/imunologia , Humanos , Terapia Viral Oncolítica/métodos , Animais , Camundongos , Linhagem Celular Tumoral , Vírus Oncolíticos/imunologia , Citotoxicidade Imunológica , Simplexvirus/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer ; 129(19): 3010-3022, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37246417

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common malignant primary brain tumor. Emerging reports have suggested that racial and socioeconomic disparities influence the outcomes of patients with GBM. No studies to date have investigated these disparities controlling for isocitrate dehydrogenase (IDH) mutation and O-6-methylguanine-DNA methyltransferase (MGMT) status. METHODS: Adult patients with GBM were retrospectively reviewed at a single institution from 2008 to 2019. Univariable and multivariable complete survival analyses were performed. A Cox proportional hazards model was used to assess the effect of race and socioeconomic status controlling for a priori selected variables with known relevance to survival. RESULTS: In total, 995 patients met inclusion criteria. Of these, 117 patients (11.7%) were African American (AA). The median overall survival for the entire cohort was 14.23 months. In the multivariable model, AA patients had better survival compared with White patients (hazard ratio [HR], 0.37; 95% confidence interval [CI], 0.2-0.69). The observed survival difference was significant in both a complete case analysis model and a multiple imputations model accounting for missing molecular data and controlling for treatment and socioeconomic status. AA patients with low income (HR, 2.17; 95% CI, 1.04-4.50), public insurance (HR, 2.25; 95% CI, 1.04-4.87), or no insurance (HR, 15.63; 95% CI, 2.72-89.67) had worse survival compared with White patients with low income, public insurance, or no insurance, respectively. CONCLUSIONS: Significant racial and socioeconomic disparities were identified after controlling for treatment, GBM genetic profile, and other variables associated with survival. Overall, AA patients demonstrated better survival. These findings may suggest the possibility of a protective genetic advantage in AA patients. PLAIN LANGUAGE SUMMARY: To best personalize treatment for and understand the causes of glioblastoma, racial and socioeconomic influences must be examined. The authors report their experience at the O'Neal Comprehensive Cancer Center in the deep south. In this report, contemporary molecular diagnostic data are included. The authors conclude that there are significant racial and socioeconomic disparities that influence glioblastoma outcome and that African American patients do better.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/diagnóstico , Estudos Retrospectivos , Disparidades Socioeconômicas em Saúde , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/diagnóstico , Análise de Sobrevida , Disparidades em Assistência à Saúde
5.
J Neurooncol ; 158(1): 33-40, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35441948

RESUMO

PURPOSE: Primary Central Nervous System Lymphoma (PCNSL) is an aggressive tumor that is confined to the CNS. Although the provision of high-dose methotrexate (HD-MTX) has remarkably improved outcomes in PCNSL patients, the optimal treatment regimens and standard MTX dose for induction therapy have been largely controversial. Herein, we sought to explore the impact of adjuvant rituximab and different dosages of induction HD-MTX on survival outcomes of immunocompetent patients with PCNSL. METHODS: In this study, we examined patients with PCNSL treated at a single NCI-designated comprehensive cancer center to evaluate their survival outcomes. We conducted a retrospective analysis of 51 immunocompetent patients with PCNSL who received their induction chemotherapy at the University of Alabama at Birmingham (UAB) between 2001 and 2019. Only adult patients with a confirmed diagnosis of PCNSL who had either HD-MTX alone or in combination with rituximab were included. Patients' demographics, clinical characteristics, and survival data were collected and analyzed. RESULTS: There is no significant difference in survival among patients who received MTX alone versus MTX plus rituximab (HR = 0.996 (95% CI: 0.398-2.493), p = 0.994). Lower doses of MTX were associated with worse survival outcomes (HR = 0.680 (95% CI: 0.530-0.872), p = 0.002); however, this difference in survival was not significant when adjusted to age (HR = 0.797 (95% CI: 0.584-1.088), p = 0.153). CONCLUSION: Our experience challenges the role of rituximab in PCNSL during induction therapy. Our study also highlights the shorter survival in elderly patients with PCNSL which can be related, to some extent, to the relatively lower doses of HD-MTX. There is an unmet need to establish a consensus on the most effective upfront regimen in PCNSL through prospective studies.


Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias do Sistema Nervoso Central/patologia , Humanos , Linfoma/tratamento farmacológico , Linfoma/patologia , Metotrexato/uso terapêutico , Estudos Prospectivos , Estudos Retrospectivos , Rituximab/uso terapêutico
6.
Neuroophthalmology ; 46(2): 91-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273411

RESUMO

A 30-year-old woman with idiopathic intracranial hypertension experienced worsening headaches and decreasing vision in her left eye. She underwent an uncomplicated ventriculoperitoneal shunt procedure but the following day was found to have cerebral venous sinus thrombosis. Treatment included venous sinus thrombectomy and anticoagulation. She had a favourable clinical outcome. Extensive evaluation including testing for thrombophilia was unremarkable. Potential causes for this rare association are discussed.

7.
Neurosurg Focus ; 50(2): E5, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524948

RESUMO

OBJECTIVE: The diagnosis of glioma remains disheartening in the clinical realm. While a multitude of studies and trials have shown promise, improvements in overall survival have been disappointing. Modeling these tumors in the laboratory setting has become increasingly challenging, given their complex in situ behavior and interactions for therapeutic evasion. Dogs, particularly brachycephalic breeds, are known to spontaneously develop gliomas that resemble human gliomas both clinically and pathophysiologically, making canines with sporadic tumors promising candidates for study. Typically, survival among these dogs is approximately 2 months with palliation alone. METHODS: The authors have completed the first stage of a unique phase I dose-escalating canine clinical trial in which the safety and tolerability of M032, a nonneurovirulent oncolytic herpes simplex virus-1 vector genetically engineered to express interleukin-12, are being studied in pet dogs with gliomas undergoing maximum safe tumor resection and inoculation of the cavity with the viral infusate. RESULTS: Twenty-five canine patients were enrolled between January 2018 and August 2020. One patient was electively withdrawn from the trial by its owner, and 3 did not receive the virus. For the 21 dogs that remained, 13 had high-grade gliomas, 5 had low-grade gliomas, and 3 were undetermined. According to histopathological analysis, 62% of the tumors were oligodendrogliomas. At the time of this report, the median overall survival from the date of treatment was 151 days (± 78 days). No significant adverse events attributable to M032 or dose-limiting toxicities have been observed to date. CONCLUSIONS: In this largest study of oncolytic viral therapy for canine brain tumors to date, treatment with M032 did not cause harm and the combination of surgery and oncolytic viral therapy may have contributed to prolonged survival in pet dogs with spontaneous gliomas. Forthcoming in-depth radiographic, immunohistochemical, and genetic analyses will afford a more advanced understanding of how this treatment impacts these tumors and the immune system. Our goal is to utilize these findings bitranslationally to inform human studies and refine therapies that will improve outcomes in both humans and pet dogs with gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Herpesvirus Humano 1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Neoplasias Encefálicas/terapia , Cães , Glioma/terapia , Humanos , Interleucina-12 , Vírus Oncolíticos/genética
8.
Eur J Nucl Med Mol Imaging ; 47(6): 1412-1426, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31773232

RESUMO

PURPOSE: There is a clinical need for agents that target glioma cells for non-invasive and intraoperative imaging to guide therapeutic intervention and improve the prognosis of glioma. Matrix metalloproteinase (MMP)-14 is overexpressed in glioma with negligible expression in normal brain, presenting MMP-14 as an attractive biomarker for imaging glioma. In this study, we designed a peptide probe containing a near-infrared fluorescence (NIRF) dye/quencher pair, a positron emission tomography (PET) radionuclide, and a moiety with high affinity to MMP-14. This novel substrate-binding peptide allows dual modality imaging of glioma only after cleavage by MMP-14 to activate the quenched NIRF signal, enhancing probe specificity and imaging contrast. METHODS: MMP-14 expression and activity in human glioma tissues and cells were measured in vitro by immunofluorescence and gel zymography. Cleavage of the novel substrate and substrate-binding peptides by glioma cells in vitro and glioma xenograft tumors in vivo was determined by NIRF imaging. Biodistribution of the radiolabeled MMP-14-binding peptide or substrate-binding peptide was determined in mice bearing orthotopic patient-derived xenograft (PDX) glioma tumors by PET imaging. RESULTS: Glioma cells with MMP-14 activity showed activation and retention of NIRF signal from the cleaved peptides. Resected mouse brains with PDX glioma tumors showed tumor-to-background NIRF ratios of 7.6-11.1 at 4 h after i.v. injection of the peptides. PET/CT images showed localization of activity in orthotopic PDX tumors after i.v. injection of 68Ga-binding peptide or 64Cu-substrate-binding peptide; uptake of the radiolabeled peptides in tumors was significantly reduced (p < 0.05) by blocking with the non-labeled-binding peptide. PET and NIRF signals correlated linearly in the orthotopic PDX tumors. Immunohistochemistry showed co-localization of MMP-14 expression and NIRF signal in the resected tumors. CONCLUSIONS: The novel MMP-14 substrate-binding peptide enabled PET/NIRF imaging of glioma models in mice, warranting future image-guided resection studies with the probe in preclinical glioma models.


Assuntos
Glioma , Metaloproteinase 14 da Matriz , Animais , Linhagem Celular Tumoral , Glioma/diagnóstico por imagem , Camundongos , Imagem Óptica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
9.
PLoS Med ; 16(5): e1002810, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31136584

RESUMO

BACKGROUND: Low-grade gliomas cause significant neurological morbidity by brain invasion. There is no universally accepted objective technique available for detection of enlargement of low-grade gliomas in the clinical setting; subjective evaluation by clinicians using visual comparison of longitudinal radiological studies is the gold standard. The aim of this study is to determine whether a computer-assisted diagnosis (CAD) method helps physicians detect earlier growth of low-grade gliomas. METHODS AND FINDINGS: We reviewed 165 patients diagnosed with grade 2 gliomas, seen at the University of Alabama at Birmingham clinics from 1 July 2017 to 14 May 2018. MRI scans were collected during the spring and summer of 2018. Fifty-six gliomas met the inclusion criteria, including 19 oligodendrogliomas, 26 astrocytomas, and 11 mixed gliomas in 30 males and 26 females with a mean age of 48 years and a range of follow-up of 150.2 months (difference between highest and lowest values). None received radiation therapy. We also studied 7 patients with an imaging abnormality without pathological diagnosis, who were clinically stable at the time of retrospective review (14 May 2018). This study compared growth detection by 7 physicians aided by the CAD method with retrospective clinical reports. The tumors of 63 patients (56 + 7) in 627 MRI scans were digitized, including 34 grade 2 gliomas with radiological progression and 22 radiologically stable grade 2 gliomas. The CAD method consisted of tumor segmentation, computing volumes, and pointing to growth by the online abrupt change-of-point method, which considers only past measurements. Independent scientists have evaluated the segmentation method. In 29 of the 34 patients with progression, the median time to growth detection was only 14 months for CAD compared to 44 months for current standard of care radiological evaluation (p < 0.001). Using CAD, accurate detection of tumor enlargement was possible with a median of only 57% change in the tumor volume as compared to a median of 174% change of volume necessary to diagnose tumor growth using standard of care clinical methods (p < 0.001). In the radiologically stable group, CAD facilitated growth detection in 13 out of 22 patients. CAD did not detect growth in the imaging abnormality group. The main limitation of this study was its retrospective design; nevertheless, the results depict the current state of a gold standard in clinical practice that allowed a significant increase in tumor volumes from baseline before detection. Such large increases in tumor volume would not be permitted in a prospective design. The number of glioma patients (n = 56) is a limitation; however, it is equivalent to the number of patients in phase II clinical trials. CONCLUSIONS: The current practice of visual comparison of longitudinal MRI scans is associated with significant delays in detecting growth of low-grade gliomas. Our findings support the idea that physicians aided by CAD detect growth at significantly smaller volumes than physicians using visual comparison alone. This study does not answer the questions whether to treat or not and which treatment modality is optimal. Nonetheless, early growth detection sets the stage for future clinical studies that address these questions and whether early therapeutic interventions prolong survival and improve quality of life.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Proliferação de Células , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neoplasias Encefálicas/patologia , Feminino , Glioma/patologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica , Valor Preditivo dos Testes , Estudos Retrospectivos , Fatores de Tempo , Carga Tumoral
10.
J Neurooncol ; 141(2): 289-301, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30460631

RESUMO

INTRODUCTION: IDH1 mutation has been identified as an early genetic event driving low grade gliomas (LGGs) and it has been proven to exerts a powerful epigenetic effect. Cells containing IDH1 mutation are refractory to epigenetical reprogramming to iPSC induced by expression of Yamanaka transcription factors, a feature that we employed to study early genetic amplifications or deletions in gliomagenesis. METHODS: We made iPSC clones from freshly surgically resected IDH1 mutant LGGs by forced expression of Yamanaka transcription factors. We sequenced the IDH locus and analyzed the genetic composition of multiple iPSC clones by array-based comparative genomic hybridization (aCGH). RESULTS: We hypothesize that the primary cell pool isolated from LGG tumor contains a heterogeneous population consisting tumor cells at various stages of tumor progression including cells with early genetic lesions if any prior to acquisition of IDH1 mutation. Because cells containing IDH1 mutation are refractory to reprogramming, we predict that iPSC clones should originate only from LGG cells without IDH1 mutation, i.e. cells prior to acquisition of IDH1 mutation. As expected, we found that none of the iPSC clones contains IDH1 mutation. Further analysis by aCGH of the iPSC clones reveals that they contain regional chromosomal amplifications which are also present in the primary LGG cells. CONCLUSIONS: These results indicate that there exists a subpopulation of cells harboring gene amplification but without IDH1 mutation in the LGG primary cell pool. Further analysis of TCGA LGG database demonstrates that these regional chromosomal amplifications are also present in some cases of low grade gliomas indicating they are reoccurring lesions in glioma albeit at a low frequency. Taken together, these data suggest that regional chromosomal alterations may exist prior to the acquisition of IDH mutations in at least some cases of LGGs.


Assuntos
Neoplasias Encefálicas/genética , Amplificação de Genes , Glioma/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Isocitrato Desidrogenase/genética , Adulto , Neoplasias Encefálicas/metabolismo , Aberrações Cromossômicas , Células Clonais/fisiologia , Glioma/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Isocitrato Desidrogenase/metabolismo , Masculino
11.
J Neurooncol ; 122(3): 585-93, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25711673

RESUMO

Bevacizumab is widely used for treatment of high-grade gliomas and other malignancies. Because bevacizumab has been shown to be associated with neurocognitive decline, this study is designed to investigate whether prolonged treatment with bevacizumab is also associated with brain atrophy. We identified 12 high-grade glioma patients who received bevacizumab for 12 months at the first recurrence and 13 matched controls and blindly compared the volumes of the contralateral hemispheres and contralateral ventricle in these two groups at baseline and after 12 ± 2 months of the baseline scan by two independent analyses. The volumes of the contralateral hemispheres and ventricles did not differ significantly between the two groups at baseline. Whereas, in the control group the volumes of the contralateral hemisphere changed subtly from baseline to follow-up (p = 0.23), in the bevacizumab-treated group the volumes significantly decreased from baseline to follow-up (p = 0.03). There was significant increase in the contralateral ventricle volume from base line to follow-up scans in both the control group (p = 0.01) and in the bevacizumab group (p = 0.005). Both the absolute and the percentage changes of contralateral hemisphere volumes and contralateral ventricular volumes between the two patient groups were statistically significant (p < 0.05). Results of this study demonstrate prolonged treatment with bevacizumab is associated with atrophy of the contralateral brain hemisphere.


Assuntos
Inibidores da Angiogênese/efeitos adversos , Bevacizumab/efeitos adversos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Adulto , Idoso , Análise de Variância , Atrofia/induzido quimicamente , Atrofia/patologia , Neoplasias Encefálicas/tratamento farmacológico , Feminino , Seguimentos , Lateralidade Funcional , Glioma/tratamento farmacológico , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Retrospectivos
12.
Mol Ther ; 22(5): 1056-62, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24553100

RESUMO

Reovirus, an oncolytic RNA virus exhibiting antiglioma activity, was shown in a previous single institution phase 1 study found that the inoculation of the virus to be well tolerated in patients with recurrent malignant glioma (MG). The goals of multicenter study reported herein were to determine the dose-limiting toxicity, maximum tolerated dose, and target lesion response rate when reovirus was administered in a novel fashion via intratumoral infusion for 72 hours in patients with recurrent malignant glioma. Fifteen adult patients were treated in a dose escalation study ranging from 1 × 10(8) to 1 × 10(10) tissue culture infectious dose 50, tentimes the dose achieved in the previous trial. Neurological, functional examinations, and imaging studies were completed pre- and postinfusion. There was one grade 3 adverse event (convulsions) felt to be possibly related to treatment, but no grade 4 adverse events considered probably or definitely related to treatment. Dose-limiting toxicity were not identified and a maximum tolerated dose was not reached. Evidence of antiglioma activity was seen in some patients. This first report of intratumoral infusion of reovirus in patients with recurrent malignant glioma demonstrated the approach to be safe and well tolerated, warranting further studies.


Assuntos
Glioma/terapia , Recidiva Local de Neoplasia/terapia , Terapia Viral Oncolítica , Reoviridae/genética , Adulto , Idoso , Feminino , Glioma/genética , Glioma/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/virologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/patogenicidade
13.
Mol Ther ; 22(5): 1048-55, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24572293

RESUMO

G207, a mutant herpes simplex virus (HSV) type 1, is safe when inoculated into recurrent malignant glioma. We conducted a phase 1 trial of G207 to demonstrate the safety of stereotactic intratumoral administration when given 24 hours prior to a single 5 Gy radiation dose in patients with recurrent malignant glioma. Nine patients with progressive, recurrent malignant glioma despite standard therapy were included. Patients received one dose of G207 stereotactically inoculated into the multiple sites of the enhancing tumor margin and were then treated focally with 5 Gy radiation. Treatment was well tolerated, and no patient developed HSV encephalitis. The median interval between initial diagnosis and G207 inoculation was 18 months (mean: 23 months; range: 11-51 months). Six of the nine patients had stable disease or partial response for at least one time point. Three instances of marked radiographic response to treatment occurred. The median survival time from G207 inoculation until death was 7.5 months (95% confidence interval: 3.0-12.7). In conclusion, this study showed the safety and the potential for clinical response of single-dose oncolytic HSV therapy augmented with radiation in the treatment of malignant glioma patients. Additional studies with oncolytic HSV such as G207 in the treatment of human glioma are recommended.


Assuntos
Terapia Genética , Glioma/genética , Glioma/radioterapia , Herpesvirus Humano 1/genética , Adulto , Feminino , Glioma/diagnóstico por imagem , Glioma/virologia , Herpesvirus Humano 1/patogenicidade , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Vírus Oncolíticos/patogenicidade , Radiografia , Replicação Viral/genética
14.
Br J Neurosurg ; 29(6): 850-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26073144

RESUMO

The standard treatment for glioblastoma multiforme (GBM) remains maximal safe surgical resection. Here, we evaluated the ability of a systemically administered antibody-dye probe conjugate (cetuximab-IRDye 800CW) to provide sufficient fluorescent contrast for surgical resection of disease in both subcutaneous and orthotopic animal models of GBM. Multiple luciferase-positive GBM cell lines (D-54MG, U-87MG, and U-251MG; n = 5) were implanted in mouse flank and tumors were fluorescently imaged daily using a closed-field near-infrared (NIR) system after cetuximab-IRDye 800CW systemic administration. Orthotopic models were also generated (n = 5), and tumor resection was performed under white light and fluorescence guidance using an FDA-approved wide-field NIR imaging system. Residual tumor was monitored using luciferase imaging. Immunohistochemistry was performed to characterize tumor fluorescence, epidermal growth factor receptor (EGFR) expression, and vessel density. Daily imaging of tumors revealed an average tumor-to-background (TBR) of 4.5 for U-87MG, 4.1 for D-54MG, and 3.7 for U-251MG. Fluorescence intensity within the tumors peaked on day-1 after cetuximab-IRDye 800CW administration, however the TBR increased over time in two of the three cell lines. For the orthotopic model, TBR on surgery day ranged from 19 to 23 during wide-field, intraoperative imaging. Surgical resection under white light on day 3 after cetuximab-IRDye 800CW resulted in an average 41% reduction in luciferase signal while fluorescence-guided resection using wide-field NIR imaging resulted in a significantly (P = 0.001) greater reduction in luciferase signal (87%). Reduction of luciferase signal was found to correlate (R (2) = 0.99) with reduction in fluorescence intensity. Fluorescence intensity was found to correlate (P < 0.05) with EGFR expression in D-54MG and U-251MG tumor types but not U-87MG. However, tumor fluorescence was found to correlate with vessel density for the U-87MG tumors. Here we show systemic administration of cetuximab-IRDye 800CW in combination with wide-field NIR imaging provided robust and specific fluorescence contrast for successful localization of disease in subcutaneous and orthotopic animal models of GBM.


Assuntos
Benzenossulfonatos , Neoplasias Encefálicas/cirurgia , Cetuximab , Corantes Fluorescentes , Glioblastoma/cirurgia , Indóis , Procedimentos Neurocirúrgicos/métodos , Cirurgia Assistida por Computador/métodos , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Receptores ErbB , Feminino , Glioblastoma/patologia , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Raios Infravermelhos , Camundongos , Camundongos Nus , Transplante de Neoplasias
15.
Front Immunol ; 15: 1375413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38895115

RESUMO

Introduction: Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas with unacceptably low cure rates occurring often in patients with neurofibromatosis 1 defects. To investigate oncolytic Herpes Simplex Virus (oHSV) as an immunotherapeutic approach, we compared viral replication, functional activity, and immune response between unarmed and interleukin 12 (IL-12)-armed oncolytic viruses in virus-permissive (B109) and -resistant (67C-4) murine MPNSTs. Methods: This study compared two attenuated IL-12-oHSVs with γ134.5 gene deletions (Δγ134.5) and the same transgene expression cassette. The primary difference in the IL-12-oHSVs was in their ability to counter the translational arrest response in infected cells. Unlike M002 (Δγ134.5, mIL-12), C002 (Δγ134.5, mIL-12, IRS1) expresses an HCMV IRS1 gene and evades dsRNA activated translational arrest in infected cells. Results and discussion: Our results show that oHSV replication and gene expression results in vitro were not predictive of oHSV direct oncolytic activity in vivo. Tumors that supported viral replication in cell culture studies resisted viral replication by both oHSVs and restricted M002 transgene expression in vivo. Furthermore, two IL-12-oHSVs with equivalent transcriptional activity differed in IL-12 protein production in vivo, and the differences in IL-12 protein levels were reflected in immune infiltrate activity changes as well as tumor growth suppression differences between the IL-12-oHSVs. C002-treated tumors exhibited sustained IL-12 production with improved dendritic cells, monocyte-macrophage activity (MHCII, CD80/CD86 upregulation) and a polyfunctional Th1-cell response in the tumor infiltrates. Conclusion: These results suggest that transgene protein production differences between oHSVs in vivo, in addition to replication differences, can impact OV-therapeutic activity.


Assuntos
Interleucina-12 , Terapia Viral Oncolítica , Vírus Oncolíticos , Transgenes , Replicação Viral , Animais , Interleucina-12/genética , Interleucina-12/metabolismo , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Linhagem Celular Tumoral , Imunoterapia/métodos , Humanos , Simplexvirus/genética , Células Dendríticas/imunologia , Feminino
16.
J Clin Invest ; 134(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226619

RESUMO

Since the discovery that cGAS/STING recognizes endogenous DNA released from dying cancer cells and induces type I interferon and antitumor T cell responses, efforts to understand and therapeutically target the STING pathway in cancer have ensued. Relative to other cancer types, the glioma immune microenvironment harbors few infiltrating T cells, but abundant tumor-associated myeloid cells, possibly explaining disappointing responses to immune checkpoint blockade therapies in cohorts of patients with glioblastoma. Notably, unlike most extracranial tumors, STING expression is absent in the malignant compartment of gliomas, likely due to methylation of the STING promoter. Nonetheless, several preclinical studies suggest that inducing cGAS/STING signaling in the glioma immune microenvironment could be therapeutically beneficial, and cGAS/STING signaling has been shown to mediate inflammatory and antitumor effects of other modalities either in use or being developed for glioblastoma therapy, including radiation, tumor-treating fields, and oncolytic virotherapy. In this Review, we discuss cGAS/STING signaling in gliomas, its implications for glioma immunobiology, compartment-specific roles for STING signaling in influencing immune surveillance, and efforts to target STING signaling - either directly or indirectly - for antiglioma therapy.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/terapia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais , DNA , Microambiente Tumoral
17.
Theranostics ; 14(3): 911-923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250045

RESUMO

Rationale: Novel immune-activating therapeutics for the treatment of glioblastoma multiforme (GBM) have shown potential for tumor regression and increased survival over standard therapies. However, immunotherapy efficacy remains inconsistent with response assessment being complicated by early treatment-induced apparent radiological tumor progression and slow downstream effects. This inability to determine early immunotherapeutic benefit results in a drastically decreased window for alternative, and potentially more effective, treatment options. The objective of this study is to evaluate the effects of combination immunotherapy on early CD8+ cell infiltration and its association with long term response in orthotopic syngeneic glioblastoma models. Methods: Luciferase positive GBM orthotopic mouse models (GSC005-luc) were imaged via [89Zr]-CD8 positron emission tomography (PET) one week following treatment with saline, anti-PD1, M002 oncolytic herpes simplex virus (oHSV) or combination immunotherapy. Subsequently, brains were excised, imaged via [89Zr]-CD8 ImmunoPET and evaluated though autoradiography and histology for H&E and CD8 immunohistochemistry. Longitudinal immunotherapeutic effects were evaluated through [89Zr]-CD8 PET imaging one- and three-weeks following treatment, with changes in tumor volume monitored on a three-day basis via bioluminescence imaging (BLI). Response classification was then performed based on long-term BLI signal changes. Statistical analysis was performed between groups using one-way ANOVA and two-sided unpaired T-test, with p < 0.05 considered significant. Correlations between imaging and biological validation were assessed via Pearson's correlation test. Results: [89Zr]-CD8 PET standardized uptake value (SUV) quantification was correlated with ex vivo SUV quantification (r = 0.61, p < 0.01), autoradiography (r = 0.46, p < 0.01), and IHC tumor CD8+ cell density (r = 0.55, p < 0.01). Classification of therapeutic responders, via bioluminescence signal, revealed a more homogeneous CD8+ immune cell distribution in responders (p < 0.05) one-week following immunotherapy. Conclusions: Assessment of early CD8+ cell infiltration and distribution in the tumor microenvironment provides potential imaging metrics for the characterization of oHSV and checkpoint blockade immunotherapy response in GBM. The combination therapies showed enhanced efficacy compared to single agent immunotherapies. Further development of immune-focused imaging methods can provide clinically relevant metrics associated with immune cell localization that can inform immunotherapeutic efficacy and subsequent treatment response in GBM patients.


Assuntos
Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Tomografia Computadorizada por Raios X , Imunoterapia , Tomografia por Emissão de Pósitrons , Linfócitos T CD8-Positivos , Microambiente Tumoral
18.
Mol Cancer Ther ; 23(9): 1273-1281, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38710101

RESUMO

Oncolytic virotherapy or immunovirotherapy is a strategy that utilizes viruses to selectively infect and kill tumor cells while also stimulating an immune response against the tumor. Early clinical trials in both pediatric and adult patients using oncolytic herpes simplex viruses (oHSV) have demonstrated safety and promising efficacy; however, combinatorial strategies designed to enhance oncolysis while also promoting durable T-cell responses for sustaining disease remission are likely required. We hypothesized that combining the direct tumor cell killing and innate immune stimulation by oHSV with a vaccine that promotes T cell-mediated immunity may lead to more durable tumor regression. To this end, we investigated the preclinical efficacy and potential synergy of combining oHSV with a self-assembling nanoparticle vaccine codelivering peptide antigens and Toll-like receptor 7 and 8 agonists (referred to as SNAPvax),which induces robust tumor-specific T-cell immunity. We then assessed how timing of the treatments (i.e., vaccine before or after oHSV) impacts T-cell responses, viral replication, and preclinical efficacy. The sequence of treatments was critical, as survival was significantly enhanced when the SNAPvax vaccine was given prior to oHSV. Increased clinical efficacy was associated with reduced tumor volume and increases in virus replication and tumor antigen-specific CD8+ T cells. These findings substantiate the criticality of combination immunotherapy timing and provide preclinical support for combining SNAPvax with oHSV as a promising treatment approach for both pediatric and adult tumors.


Assuntos
Vacinas Anticâncer , Imunoterapia , Terapia Viral Oncolítica , Terapia Viral Oncolítica/métodos , Animais , Camundongos , Humanos , Imunoterapia/métodos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/administração & dosagem , Terapia Combinada , Simplexvirus , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/genética , Linhagem Celular Tumoral , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Virol ; 86(9): 5304-13, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22379082

RESUMO

Herpes simplex virus 1 (HSV-1) mutants that lack the γ(1)34.5 gene are unable to replicate in the central nervous system but maintain replication competence in dividing cell populations, such as those found in brain tumors. We have previously demonstrated that a γ(1)34.5-deleted HSV-1 expressing murine interleukin-12 (IL-12; M002) prolonged survival of immunocompetent mice in intracranial models of brain tumors. We hypothesized that M002 would be suitable for use in clinical trials for patients with malignant glioma. To test this hypothesis, we (i) compared the efficacy of M002 to three other HSV-1 mutants, R3659, R8306, and G207, in murine models of brain tumors, (ii) examined the safety and biodistribution of M002 in the HSV-1-sensitive primate Aotus nancymae following intracerebral inoculation, and (iii) determined whether murine IL-12 produced by M002 was capable of activating primate lymphocytes. Results are summarized as follows: (i) M002 demonstrated superior antitumor activity in two different murine brain tumor models compared to three other genetically engineered HSV-1 mutants; (ii) no significant clinical or magnetic resonance imaging evidence of toxicity was observed following direct inoculation of M002 into the right frontal lobes of A. nancymae; (iii) there was no histopathologic evidence of disease in A. nancymae 1 month or 5.5 years following direct inoculation; and (iv) murine IL-12 produced by M002 activates A. nancymae lymphocytes in vitro. We conclude that the safety and preclinical efficacy of M002 warrants the advancement of a Δγ(1)34.5 virus expressing IL-12 to phase I clinical trials for patients with recurrent malignant glioma.


Assuntos
Vetores Genéticos/genética , Interleucina-12/genética , Simplexvirus/genética , Aciclovir/farmacologia , Animais , Antivirais/farmacologia , Aotidae , Encéfalo/patologia , Linhagem Celular , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Feminino , Expressão Gênica , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Glioma/genética , Glioma/mortalidade , Glioma/terapia , Humanos , Interleucina-12/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos SCID , Simplexvirus/efeitos dos fármacos , Análise de Sobrevida , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Expert Opin Biol Ther ; 23(10): 987-1003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37749907

RESUMO

INTRODUCTION: Many pediatric patients with malignant tumors continue to suffer poor outcomes. The current standard of care includes maximum safe surgical resection followed by chemotherapy and radiation which may be associated with considerable long-term morbidity. The emergence of oncolytic virotherapy (OVT) may provide an alternative or adjuvant treatment for pediatric oncology patients. AREAS COVERED: We reviewed seven virus types that have been investigated in past or ongoing pediatric tumor clinical trials: adenovirus (AdV-tk, Celyvir, DNX-2401, VCN-01, Ad-TD-nsIL-12), herpes simplex virus (G207, HSV-1716), vaccinia (JX-594), reovirus (pelareorep), poliovirus (PVSRIPO), measles virus (MV-NIS), and Senecavirus A (SVV-001). For each virus, we discuss the mechanism of tumor-specific replication and cytotoxicity as well as key findings of preclinical and clinical studies. EXPERT OPINION: Substantial progress has been made in the past 10 years regarding the clinical use of OVT. From our review, OVT has favorable safety profiles compared to chemotherapy and radiation treatment. However, the antitumor effects of OVT remain variable depending on tumor type and viral agent used. Although the widespread adoption of OVT faces many challenges, we are optimistic that OVT will play an important role alongside standard chemotherapy and radiotherapy for the treatment of malignant pediatric solid tumors in the future.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Criança , Vírus Oncolíticos/genética , Neoplasias/terapia , Simplexvirus/genética , Vaccinia virus , Terapia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA